

Worldwide Facilities Group Remediation Team

April 29, 2008

Reference No. 013968

Mr. Peter Ramanauskas Project Manager for IND 0060306099 Land and Chemicals Division U.S. EPA Region 5 77 West Jackson Blvd. (LU-9J) Chicago, IL 60604-3590

Dear Mr. Ramanauskas:

Re: GM Powertrain – Bedford Facility, IND 006036099 Voluntary RCRA Corrective Action EI CA750 Determination GM Powertrain Group, Bedford Indiana Facility Bedford, Indiana

General Motors (GM) Powertrain–Bedford Plant, Bedford, Indiana (Facility) has prepared the enclosed CA750 – Migration of Contaminated Groundwater Under Control Form (including supporting tables and figures) to facilitate the United States Environmental Protection Agency's (U.S. EPA) CA750 determination for this Facility. Based on its evaluation of the RFI groundwater characterization results, GM believes that the available data on current groundwater conditions at the facility support a positive CA750 determination (RCRIS status code "YE").

Also enclosed are three documents that U.S. EPA had requested to facilitate its CA750 determination: (1) dye-trace study reports (prepared by Hydrogeology, Inc. (HGI); (2) discussion of the quality control review of contamination of the sample analytical results that occurred in May and June 2006 (prepared by CRA); and (3) discussion regarding the re-sampling of residential wells near the Facility (prepared by CRA).

We look forward to your review of the enclosed materials. If you have any questions during your review, or need addition information, please call me at (248) 753-5799.

Yours truly,

General Motors Corporation

Sheng R. Huelt

Cheryl R. Hiatt Project Manager

WS/cnb/111 Encl.

c.c.: See Attached Distribution List

•2000 Centerpoint Pkwy •Mail Code 483-520-190 • Pontiac, MI 48341-3147 • FAX (248) 753-5829

Mr. Peter Ramanauskas April 29, 2008 Page 2

GM Bedford Distribution List

copy sent (y/n)

Peter Ramanauskas (2)	U.S. EPA, Region 5	Yes
Brad Stimple	U.S. EPA, OSC	Yes
Gerald O'Callaghan (5 copies)	IDEM Management	Yes
Stacey DeLaReintrie	TN & Associates	Yes
John Bassett	Earth Tech	Yes
Ed Peterson	GM WFG Remediation	Yes
Stephen Song	ENVIRON International Corporation, Inc.	Yes
Francis Ramacciotti	ENVIRON International Corporation, Inc.	Yes
James McGuigan	CRA Project Manager	Yes
Bill Steinmann	CRA Project Geologist	Yes

DOCUMENTATION OF ENVIRONMENTAL INDICATOR DETERMINATION Interim Final 2/5/99 RCRA Corrective Action Environmental Indicator (EI) RCRIS code (CA750)

Migration of Contaminated Groundwater Under Control

Facility Name:	General Motors Powertrain Bedford Facility
Facility Address:	105 GM Drive, Bedford, Indiana
Facility EPA ID #:	IND 006 036 099

1. Has **all** available relevant/significant information on known and reasonably suspected releases to the groundwater media, subject to RCRA Corrective Action (e.g., from Solid Waste Management Units (SWMU), Regulated Units (RU), and Areas of Concern (AOC)), been **considered** in this EI determination?

X If yes - check here and continue with #2 below.

If no - re-evaluate existing data, or

If data are not available skip to #6 and enter "IN" (more information needed) status code.

BACKGROUND

Definition of Environmental Indicators (for the RCRA Corrective Action)

Environmental Indicators (EI) are measures being used by the RCRA Corrective Action program to go beyond programmatic activity measures (e.g., reports received and approved, etc.) to track changes in the quality of the environment. The two EI developed to-date indicate the quality of the environment in relation to current human exposures to contamination and the migration of contaminated groundwater. An EI for non-human (ecological) receptors is intended to be developed in the future.

Definition of "Migration of Contaminated Groundwater Under Control" EI

A positive "Migration of Contaminated Groundwater Under Control" EI determination ("YE" status code) indicates that the migration of "contaminated" groundwater has stabilized, and that monitoring will be conducted to confirm that contaminated groundwater remains within the original "area of contaminated groundwater" (for all groundwater "contamination" subject to RCRA corrective action at or from the identified facility (i.e., site-wide)).

Relationship of EI to Final Remedies

While Final remedies remain the long-term objective of the RCRA Corrective Action program the EI are near-term objectives which are currently being used as Program measures for the Government Performance and Results Act of 1993, GPRA). The "Migration of Contaminated Groundwater Under Control" EI pertains ONLY to the physical migration (i.e., further spread) of contaminated ground water and contaminants within groundwater (e.g., non-aqueous phase liquids or NAPLs). Achieving this EI does not substitute for achieving other stabilization or final remedy requirements and expectations associated with sources of contamination and the need to restore, wherever practicable, contaminated groundwater to be suitable for its designated current and future uses.

Duration / Applicability of EI Determinations

EI Determinations status codes should remain in RCRIS national database ONLY as long as they remain true (i.e., RCRIS status codes must be changed when the regulatory authorities become aware of contrary information).

- 2. Is **groundwater** known or reasonably suspected to be "**contaminated**"¹ above appropriately protective "levels" (i.e., applicable promulgated standards, as well as other appropriate standards, guidelines, guidance, or criteria) from releases subject to RCRA Corrective Action, anywhere at, or from, the facility?
 - X If yes continue after identifying key contaminants, citing appropriate "levels," and referencing supporting documentation.
 - If no skip to #8 and enter "YE" status code, after citing appropriate "levels," and referencing supporting documentation to demonstrate that groundwater is not "contaminated."
 - If unknown skip to #8 and enter "IN" status code.

Rationale and Reference(s):

Groundwater at the Facility is found in four flow systems: overburden, shallow bedrock, intermediate bedrock, and deep bedrock. Groundwater in the overburden and shallow bedrock discharges to the ground surface as seeps and springs at some locations at and around the Facility. A survey of groundwater use around the Facility conducted during preparation of the Current Conditions Report (CRA 2001a) identified a few former residential wells, but found no current potable use of groundwater in the vicinity of the Facility (CRA 2001a). The locations where groundwater and spring water data have been collected from each of the groundwater flow systems are shown on Figures 1 to 8.

The identification of "contaminated" groundwater for the purposes of this CA750 determination is based on a comparison of the most recent groundwater and spring water data, which best represent current conditions, with drinking water criteria. This CA750 determination is based on validated groundwater and surface water data that were collected through March 18, 2008. The drinking water criteria are based on the following hierarchy: (1) Indiana maximum contaminant levels (MCLs), (2) Federal MCLs, and (3) Region 9 tap water ingestion values based on a target cancer risk of 10⁻⁵ and a hazard quotient of 1. Table 2-1 summarizes the comparison for the most recent groundwater data from monitoring wells for all detected constituents in each of the four flow systems. Table 2-2 summarizes the comparison of the most recent spring water data. Table 2-3 summarizes the most recent data from former residential wells and cisterns. The locations where the current data indicate presence of contamination are shown on Figures 1 to 8. The comparison results for non-PCB chemicals are shown on Figures 1 to 4, and the comparison results for PCBs are shown on Figures 5 to 8. Figures 5 to 8 are also color-coded to show locations where the concentration of PCBs had been higher than the MCL of 0.0005 mg/L even if subsequent monitoring showed that the concentration is not higher than the MCL.

Table 2-4a summarizes the locations where the concentration of PCBs in the most recent groundwater data is higher than the MCL. As shown on this table, only three monitoring wells in the overburden and shallow bedrock have PCB concentrations that exceed the MCL, and no wells in the intermediate bedrock and deep bedrock have a PCB concentration that exceeds the

Footnotes:

¹"Contamination" and "contaminated" describes media containing contaminants (in any form, NAPL and/or dissolved, vapors, or solids, that are subject to RCRA) in concentrations in excess of appropriate "levels" (appropriate for the protection of the groundwater resource and its beneficial uses).

Page 3

MCL. Table 2-4b summarizes the locations of the springs where the concentration of PCBs in the most recent data is higher than the MCL. As shown on this table, approximately 20 springs have PCB concentrations that exceed the MCL, but the spring water from all of these locations is collected and managed in accordance with the Facility's Site Source Control Plan (CRA 2003) and Addenda.

As shown on Tables 2-1, two other organic compounds have concentrations in groundwater that are higher than the drinking water criteria. Chlorobenzene and vinyl chloride concentrations exceeded the drinking water criteria at one former temporary monitoring well (TMW-X193Y251) in the overburden, which has been removed as part of the AOI 4 soil removal action in March 2007.

Tables 2-1 and 2-2 also show that a few metals (aluminum, arsenic, chromium, iron, lead, and manganese) have concentrations that are higher than the drinking water criteria at several monitoring wells and springs. However, the presence of these metals is likely unrelated to the Facility based on their distribution in the groundwater and the RFI soil characterization data at and around these locations. Additional groundwater sampling and analysis for certain metals at certain locations (MW-X033Y147 cluster, MW-X257Y073, and MW-X169Y058S-1) were included as part of the most recent groundwater sampling event to verify the prior concentrations. The results of this sampling show that the most recent concentrations of chromium III and VI, antimony, and thallium do not exceed drinking water criteria at the MW-X033Y147 cluster, MW-X257Y073, and MW-X169Y058S-1, respectively. These data, including the recently collected data, do not indicate that the metal concentrations higher than the drinking water criteria are related to the Facility, and therefore, these concentrations are not considered "contamination" for the purposes of this CA750 determination.

Nonaqueous-phase liquid (NAPL) is present at several springs and monitoring wells in the overburden and shallow bedrock. The majority of the NAPL observed in overburden and shallow bedrock at the Facility is denser than water and likely hydraulic oil that was used in the diepresses. NAPL that is lighter than water has been observed at only one location at the Facility, corehole location CH-5. At this location, both light non-aqueous phase liquid (LNAPL) and dense non-aqueous phase liquid (DNAPL) have historically been observed. However, the most recent monitoring of this location has identified only dense NAPL and the material that appeared to be LNAPL at CH-5 may have settled and sunk to the bottom of the corehole. The analytical data from NAPL and liquid emulsion are summarized on Table 2-5. which show that PCBs were detected in most of the liquid samples. A few VOCs, SVOCs, and metals were also detected in some of the liquid samples. NAPL was also present in the former residential well at Parcel 207 (which is in the shallow bedrock) and possibly in the former residential well at Parcel 213. The most recent result from the Parcel 207 Well is included on Table 2-3. The residential well at Parcel 213 was previously grouted, thus, a sample could not be collected from this location. However, GM has installed monitoring wells at both of these parcels (MW-X247Y118 and MW-X318Y217) and has not observed NAPL in these monitoring wells.

In summary, groundwater at the Facility is considered to meet the definition of "contamination" based on the presence of concentrations of PCBs, chlorobenzene, and vinyl chloride in groundwater and spring water that are higher than their MCLs, and the presence of NAPL.

- Has the **migration** of contaminated groundwater **stabilized** (such that contaminated groundwater is 3. expected to remain within "existing area of contaminated groundwater"² as defined by the monitoring locations designated at the time of this determination)?
 - **X** If yes continue, after presenting or referencing the physical evidence (e.g., groundwater sampling/measurement/migration barrier data) and rationale why contaminated groundwater is expected to remain within the (horizontal or vertical) dimensions of the "existing area of groundwater contamination"²).
 - If no (contaminated groundwater is observed or expected to migrate beyond the designated locations defining the "existing area of groundwater contamination"²) - skip to #8 and enter "NO" status code, after providing an explanation.
 - If unknown skip to #8 and enter "IN" status code.

Rationale and Reference(s):

Groundwater and Springs

Overburden Groundwater

Chlorobenzene, vinyl chloride, and PCB concentrations exceed their MCLs at former temporary monitoring well TMW-X193Y251, which was installed in the overburden and was subsequently excavated as part of the AOI 4 soil removal action in March 2007. As shown in the dye-trace report for AOI 4 (Hydrogeology inc. 2007), groundwater at this location flows to the northeast and discharges at a number of springs which are all being captured in Site Source Control (SSC) systems A, B, E, F, and G.

Shallow Bedrock Groundwater

Total and dissolved PCB concentrations exceed the MCL from samples collected in March 2003 at MW-X233Y087S and in February 2008 at B-X143Y193CG. Groundwater in the shallow bedrock in the area of MW-X233Y087S flows to the southeast and is captured by Wet Well 1. Groundwater in the shallow bedrock in the area of B-X143Y193CG flows to the northeast and is captured by the installed Site Source Control systems and/or by the vault underdrain collection system from the East Plant Area Vault Design Report (CRA 2006).

Intermediate Bedrock Groundwater

As noted in the answer to Question 2, no site-related constituent has a groundwater concentration that is higher than the drinking water criteria in the intermediate bedrock.

Deep Bedrock Groundwater

As noted in the answer to Question 2, no site-related constituent has a groundwater concentration that is higher than the drinking water criteria in the deep bedrock.

² "existing area of contaminated groundwater" is an area (with horizontal and vertical dimensions) that has been verifiably demonstrated to contain all relevant groundwater contamination for this determination, and is defined by designated (monitoring) locations proximate to the outer perimeter of "contamination" that can and will be sampled/tested in the future to physically verify that all "contaminated" groundwater remains within this area, and that the further migration of "contaminated" groundwater is not occurring. Reasonable allowances in the proximity of the monitoring locations are permissible to incorporate formal remedy decisions (i.e., including public participation) allowing a limited area for natural attenuation.

Page 5

Former Residential Well Groundwater

PCB concentrations in groundwater from the most recent sampling of wells where the concentration of PCBs previously exceeded the MCL do not currently exceed the MCL.

Spring Water

Total and dissolved PCB concentrations exceed the MCL at approximately 20 springs. These seeps and springs are being controlled by SSC systems, Interim Measures (IM), or through removal of the spring. Table 2-4b identifies how these seeps and springs are being controlled.

In summary, the lateral and vertical extent of site-related constituent concentrations in groundwater and spring water that are higher than the drinking water criteria is either bounded by locations where groundwater or spring water is not contaminated or bounded by locations where groundwater are captured by the SSC systems.

NAPL

Figures 5 and 6 show the 13 locations where NAPL has been observed in the overburden and shallow bedrock. The lateral extent of NAPL at these 13 locations is either controlled by a SSC system or is bounded by monitoring locations where NAPL is absent. Specifically, the lateral extent of NAPL at locations CH-1B, CH-2A, CH-5, SU-X208Y096, MW-X085Y070S-2, MW-X227Y049, MW-X227Y054, MW-X209Y053, Parcel 207 Well, and Spring 3-001 is controlled by Wet Well 1 and Wet Well 2. The lateral extent of NAPL at Spring H is controlled by SSC System H. NAPL extent at locations MW-X012Y100 and MW-X211Y131 are bounded by downgradient locations that do not have NAPL. Specifically, shallow well MW-X012Y100 is bounded by locations MW-X000Y105 and MW-X022Y094, which also monitor shallow groundwater. Shallow well MW-X211Y131 is bounded downgradient by the well cluster at MW-X234Y157, which has two intervals screened to monitor shallow groundwater.

Some of the liquid samples collected at the Facility have been characterized as a DNAPL. As discussed in the January 20, 2006, memorandum to USEPA (Kueper 2006), the shallow bedrock units contain solution enhanced features (epi-karst), which has a high storage capacity for DNAPL. On the other hand, the intermediate bedrock and deep bedrock lack significant amounts of weathering and fractures. Therefore, it is unlikely that DNAPL has migrated vertically and entered these deeper flow systems. This is supported by the fact that no liquid/sheen has been seen in any of the monitoring wells in these deeper flow systems.

In summary, the lateral and vertical extent of NAPL is bounded by locations where NAPL is absent and/or locations where NAPL is captured by the SSC systems.

4. Does "contaminated" groundwater **discharge** into **surface water** bodies?

If yes - continue after identifying potentially affected surface water bodies.

X If no - skip to #7 (and enter a "YE" status code in #8, if #7 = yes) after providing an explanation and/or referencing documentation supporting that groundwater "contamination" does not enter surface water bodies.

If unknown - skip to #8 and enter "IN" status code.

Rationale and Reference(s):

As discussed in the RFI Work Plan, several surface water bodies exist to the east, north, and west of the Facility. Previously, contaminated groundwater had discharged to some of the streams adjacent to the Facility, primarily through the overburden (some of which has been removed as part of the remediation) and shallow bedrock. The sediment in these streams has since been remediated, and all identified sources that could discharge to the streams have been controlled in accordance with the SSC Plan (CRA 2003) and Addenda. In addition, an extensive seep and spring monitoring program has been initiated; seeps and springs that have been found to have contamination have been controlled with collection systems. Based on available data, no contaminated groundwater or spring water currently discharge to any surface water body

5. Is the **discharge** of "contaminated" groundwater into surface water likely to be "**insignificant**" (i.e., the maximum concentration³ of each contaminant discharging into surface water is less than 10 times their appropriate groundwater "level," and there are no other conditions (e.g., the nature, and number, of discharging contaminants, or environmental setting), which significantly increase the potential for unacceptable impacts to surface water, sediments, or eco-systems at these concentrations)?

If yes - skip to #7 (and enter "YE" status code in #8 if #7 = yes), after documenting: 1) the maximum known or reasonably suspected concentration³ of <u>key</u> contaminants discharged above their groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) provide a statement of professional judgement/explanation (or reference documentation) supporting that the discharge of groundwater contaminants into the surface water is not anticipated to have unacceptable impacts to the receiving surface water, sediments, or eco-system.

If no - (the discharge of "contaminated" groundwater into surface water is potentially significant) - continue after documenting: 1) the maximum known or reasonably suspected concentration³ of <u>each</u> contaminant discharged above its groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) for any contaminants discharging into surface water in concentrations³ greater than 100 times their appropriate groundwater "levels," the estimated total amount (mass in kg/yr) of each of these contaminants that are being discharged (loaded) into the surface water body (at the time of the determination), and identify if there is evidence that the amount of discharging contaminants is increasing.

If unknown - enter "IN" status code in #8.

Rationale and Reference(s):

³ As measured in groundwater prior to entry to the groundwater-surface water/sediment interaction (e.g., hyporheic) zone.

6. Can the **discharge** of "contaminated" groundwater into surface water be shown to be "**currently acceptable**" (i.e., not cause impacts to surface water, sediments or eco-systems that should not be allowed to continue until a final remedy decision can be made and implemented⁴)?

If yes - continue after either: 1) identifying the Final Remedy decision incorporating these conditions, or other site-specific criteria (developed for the protection of the site's surface water, sediments, and eco-systems), and referencing supporting documentation demonstrating that these criteria are not exceeded by the discharging groundwater; OR 2) providing or referencing an interim-assessment,⁵ appropriate to the potential for impact, that shows the discharge of groundwater contaminants into the surface water is (in the opinion of a trained specialists, including ecologist) adequately protective of receiving surface water, sediments, and eco-systems, until such time when a full assessment and final remedy decision can be made. Factors which should be considered in the interim-assessment (where appropriate to help identify the impact associated with discharging groundwater) include: surface water body size, flow, use/classification/habitats and contaminant loading limits, other sources of surface water/sediment contamination, surface water and sediment sample results and comparisons to available and appropriate surface water and sediment "levels," as well as any other factors, such as effects on ecological receptors (e.g., via bio-assays/benthic surveys or site-specific ecological Risk Assessments), that the overseeing regulatory agency would deem appropriate for making the EI determination.

If no - (the discharge of "contaminated" groundwater can not be shown to be "**currently acceptable**") - skip to #8 and enter "NO" status code, after documenting the currently unacceptable impacts to the surface water body, sediments, and/or eco-systems.

If unknown - skip to 8 and enter "IN" status code.

Rationale and Reference(s):

⁴ Note, because areas of inflowing groundwater can be critical habitats (e.g., nurseries or thermal refugia) for many species, appropriate specialist (e.g., ecologist) should be included in management decisions that could eliminate these areas by significantly altering or reversing groundwater flow pathways near surface water bodies.

⁵ The understanding of the impacts of contaminated groundwater discharges into surface water bodies is a rapidly developing field and reviewers are encouraged to look to the latest guidance for the appropriate methods and scale of demonstration to be reasonably certain that discharges are not causing currently unacceptable impacts to the surface waters, sediments or eco-systems.

- 7. Will groundwater **monitoring** / measurement data (and surface water/sediment/ecological data, as necessary) be collected in the future to verify that contaminated groundwater has remained within the horizontal (or vertical, as necessary) dimensions of the "existing area of contaminated groundwater?"
 - X If yes continue after providing or citing documentation for planned activities or future sampling/measurement events. Specifically identify the well/measurement locations which will be tested in the future to verify the expectation (identified in #3) that groundwater contamination will not be migrating horizontally (or vertically, as necessary) beyond the "existing area of groundwater contamination."

If no - enter "NO" status code in #8

If unknown - enter "IN" status code in #8.

Rationale and Reference(s):

Table 2-6a lists the monitoring wells, sampling frequencies, and analysis parameters that will be used to verify the stability of contaminated groundwater during the initial year of monitoring to verify this CA750 determination. Table 2-6b lists the monitoring wells where groundwater elevations will be measured and the frequency of measurement during this period to verify groundwater flow direction. Table 2-6b also identifies the monitoring wells where the presence of NAPL will be measured and the frequency of measurement. The locations identified for CA750 monitoring are also distinguished using color shading on Figures 1-8.

Table 2-6a also includes three surface water sampling locations that are intended to help confirm contaminated groundwater does not discharge to surface water. However, location Tributary 3-3 will not be sampled until potential surface runoff from currently uncapped areas surrounding Tributary 3 has been eliminated through completion of the cap system for the East Plant Area Interim Measures Alternatives Review (CRA 2005).

Separate from the CA750 monitoring summarized in Tables 2-6a and 2-6b, GM plans to continue monitoring the Site Source Controls (SSCs) and groundwater elevations at all available monitoring wells installed for the RFI.

After the first year of semi-annual monitoring, the monitoring locations and frequencies will be reevaluated with USEPA to determine if modifications to the plan would be appropriate for the purposes of this CA750 determination.

- 8. Check the appropriate RCRIS status codes for the Migration of Contaminated Groundwater Under Control EI (event code CA750), and obtain Supervisor (or appropriate Manager) signature and date on the EI determination below (attach appropriate supporting documentation as well as a map of the facility).
 - YE YE Yes, "Migration of Contaminated Groundwater Under Control" has been verified. Based on a review of the information contained in this EI determination, it has been determined that the "Migration of Contaminated Groundwater" is "Under Control" at the <u>General Motors Powertrain Bedford Facility</u>, EPA ID # <u>IND</u> <u>006 036 099</u>, located at <u>105 GM Drive</u>, <u>Bedford</u>, <u>Indiana</u>. Specifically, this determination indicates that the migration of "contaminated" groundwater is under control, and that monitoring will be conducted to confirm that contaminated groundwater remains within the "existing area of contaminated groundwater". This determination will be re-evaluated when the Agency becomes aware of significant changes at the facility.

NO - Unacceptable migration of contaminated groundwater is observed or expected.

IN - More information is needed to make a determination.

Completed by	(signature) (print) (title)	Date
Supervisor	(signature) (print)	Date
	(title) (EPA Region or State)	

Locations where References may be found:

USEPA Region 5 has the following documents, which support the CA750 documentation:

- Current Conditions Report (CRA 2001a)
- RFI Work Plan (CRA 2001b) and Addenda
- Site Source Control Work Plan (CRA 2003) and Addenda
- RFI Investigation Groundwater Analytical Data Report (CRA 2003)
- RFI Technical Memorandum Soil; Sediment; Surface Water; Wipe Sampling (CRA 2004)
- EI CA725 Report (ENVIRON 2005)
- Memorandums on High & Low Flow Spring & Seep Sampling (CRA 2005) and amendments
- East Plant Area Interim Measures Alternatives Review (CRA 2005)
- Technical Memorandum to Peter Ramanauskas from D. H. Kueper (2006)
- East Plant Area Vault Design Report (CRA 2006)
- Dye Trace Reports (Hydrogeology inc. 2007)
- Residential Well Re-Sampling Technical Memorandum (CRA 2008)

Contact telephone and e-mail numbers

(name)		
(phone #)		
(e-mail)		

TABLES

- Table 2-1:
 Groundwater Screening Results Summary
- Table 2-2:
 Spring Water Screening Results Summary
- Table 2-3:
 Residential Well and Cistern Sampling Results
- Table 2-4a: Groundwater Samples Exceeding Screening Criterion for PCBs
- Table 2-4b:
 Spring Water Samples Exceeding Screening Criterion for PCBs
- Table 2-5:
 Other Liquid Matrices Screening Results Summary
- Table 2-6a: CA750 Groundwater and Surface Water Sampling Locations
- Table 2-6b: CA750 NAPL and Groundwater Gauging Locations

						~ ~ ~		nary			
			GM Powertrain Bec	ford Facility, I	Bedfor	d, In	dia	na			
On/Off- Site	Hydrogeologic Unit	Chem Group	Chemical	CASRN	Meas Basis	Analyzed	Detected	Min Detected (mg/L)	Max Detected (mg/L)	Drinking Water Criteria (mg/L)	Ratio of Max Detect to Drinking Water Criteria
ON	Overburden		Benzene	71-43-2	T	4	1	1.55E-03	1.55E-03	5.0E-03	3.1E-01
ON	Overburden		2-Butanone	78-93-3	T	4	1	7.30E-04	7.30E-04	2.2E+01	3.3E-05
ON	Overburden	VOC	Chlorobenzene	108-90-7	T	4	1	1.45E-01	1.45E-01	1.0E-01	1.5E+00
ON	Overburden	VOC	1,2-Dichlorobenzene	95-50-1	Ť	4	1	3.70E-03	3.70E-03	6.0E-01	6.2E-03
ON	Overburden	VOC	Vinyl Chloride	75-01-4	Ť	4	1	5.30E-03	5.30E-03	2.0E-03	2.7E+00
ON	Overburden		PCBs (total)	1336-36-3	D	4	1	1.02E-03	1.02E-03	5.0E-04	2.0E+00
ON	Overburden	PCB	PCBs (total)	1336-36-3	T	4	2	4.43E-05	2.20E-03	5.0E-04	4.4E+00
ON	Overburden		Aluminum	7429-90-5	T	4	1	2.40E-01	2.40E-01	3.7E+01	6.5E-03
ON	Overburden		Arsenic	7440-38-2	D	4	1	5.20E-01	5.20E-03	1.0E-02	5.2E-03
ON	Overburden		Arsenic	7440-38-2	Т	4	1	2.90E-03	2.90E-03	1.0E-02	2.9E-01
ON	Overburden		Barium	7440-38-2	D	4	4	2.90E-03 3.40E-02	2.90E-03 2.10E-01	2.0E+00	1.1E-01
ON	Overburden		Barium	7440-39-3	T	4	4	3.40E-02 2.90E-02	2.10E-01 2.10E-01	2.0E+00	1.1E-01
ON	Overburden	INORG	Cadmium	7440-39-3	D	4	4	2.90E-02 6.70E-04	6.70E-01	5.0E-03	1.3E-01
-			Cadmium								
ON	Overburden	INORG		7440-43-9	T	4	1	7.00E-04	7.00E-04	5.0E-03	1.4E-01
ON	Overburden	INORG	Chromium (total)	7440-47-3	Т	4	2	3.70E-03	6.90E-03	1.0E-01	6.9E-02
ON	Overburden	INORG	Cobalt	7440-48-4	D	4	3	4.00E-03	1.10E-01	7.3E-01	1.5E-01
ON	Overburden	INORG	Cobalt	7440-48-4	Т	4	3	3.90E-03	1.80E-01	7.3E-01	2.5E-01
ON	Overburden		Copper	7440-50-8	D	4	1	1.70E-02	1.70E-02	1.3E+00	1.3E-02
ON	Overburden	INORG	Copper	7440-50-8	Т	4	1	3.50E-02	3.50E-02	1.3E+00	2.7E-02
ON	Overburden		Iron	7439-89-6	D	4	2	3.30E+00	4.65E+00	1.1E+01	4.2E-01
ON	Overburden		Iron	7439-89-6	Т	4	3	1.40E-01	4.70E+00	1.1E+01	4.3E-01
ON	Overburden		Manganese	7439-96-5	D	4	4	6.45E-02	2.20E+00	8.8E-01	2.5E+00
ON	Overburden		Manganese	7439-96-5	Т	4	4	6.20E-02	2.20E+00	8.8E-01	2.5E+00
ON	Overburden		Mercury	7439-97-6	D	4	1	1.30E-04	1.30E-04	2.0E-03	6.5E-02
ON	Overburden		Mercury	7439-97-6	Т	4	2	6.73E-05	1.50E-04	2.0E-03	7.5E-02
ON	Overburden		Nickel	7440-02-0	D	4	3	3.20E-03	1.40E-01	7.3E-01	1.9E-01
ON	Overburden	INORG	Nickel	7440-02-0	Т	4	4	2.18E-03	1.40E-01	7.3E-01	1.9E-01
ON	Overburden		Zinc	7440-66-6	D	4	2	5.40E-02	6.60E-02	1.1E+01	6.0E-03
ON	Overburden	INORG	Zinc	7440-66-6	Т	4	2	5.20E-02	6.60E-02	1.1E+01	6.0E-03
ON	Shallow_Bedrock	VOC	Acetone	67-64-1	Т	27	2	1.20E-03	4.20E-03	3.7E+00	1.1E-03
ON	Shallow_Bedrock	VOC	Benzene	71-43-2	Т	27	1	3.10E-04	3.10E-04	5.0E-03	6.2E-02
ON	Shallow_Bedrock	VOC	2-Butanone	78-93-3	Т	27	7	8.80E-04	8.00E-02	2.2E+01	3.6E-03
ON	Shallow_Bedrock	VOC	Carbon Disulfide	75-15-0	Т	27	3	2.70E-04	7.70E-04	3.7E+00	2.1E-04
ON	Shallow_Bedrock	VOC	Chlorobenzene	108-90-7	Т	29	2	2.50E-04	9.30E-04	1.0E-01	9.3E-03
ON	Shallow_Bedrock		Chloroform	67-66-3	Т	27	5	3.20E-04	5.10E-03	8.0E-02	6.4E-02
ON	Shallow Bedrock	VOC	Chloromethane	74-87-3	Т	27	2	1.60E-04	1.90E-04	5.2E-02	3.7E-03
ON	Shallow_Bedrock		1,2-Dichlorobenzene	95-50-1	Т	27	1	4.00E-04	4.00E-04	6.0E-01	6.7E-04
ON	Shallow Bedrock		1,3-Dichlorobenzene	541-73-1	Т	27	2	2.60E-04	2.20E-03	3.3E-02	6.7E-02
ON	Shallow Bedrock	VOC	1,4-Dichlorobenzene	106-46-7	Т	27	2	4.10E-04	6.20E-03	7.5E-02	8.3E-02
ON	Shallow_Bedrock		cis-1,2-Dichloroethene	156-59-2	T	27	1	2.00E-03	2.00E-03	7.0E-02	2.9E-02
ON	Shallow Bedrock		4-Methyl-2-pentanone	108-10-1	T	27	1	8.80E-04	8.80E-04	2.9E+00	3.0E-04
ON	Shallow_Bedrock	VOC	Toluene	108-88-3	Ť	27	13	2.10E-04	6.60E-02	1.0E+00	6.6E-02
ON	Shallow_Bedrock	VOC	Vinvl Chloride	75-01-4	T	29	1	1.90E-03	1.90E-03	2.0E-03	9.5E-01
ON	Shallow Bedrock	SVOC	bis(2-Ethylhexyl)phthalate	117-81-7	Ť	27	2	3.10E-03	4.50E-03	6.0E-03	7.5E-01
ON	Shallow_Bedrock	SVOC	Butylbenzylphthalate	85-68-7	Ť	27	2	6.10E-03	3.40E-03	7.3E+00	4.7E-04
ON	Shallow_Bedrock	SVOC	Caprolactam	105-60-2	T	27	4	9.10E-04	6.20E-01	1.8E+01	3.4E-02

			Table 2-1: Groundwat	ter Screening	Result	s Sı	umn	nary			
			GM Powertrain Bed	•							
On/Off- Site	Hydrogeologic Unit	Chem Group	Chemical	CASRN	Meas	Analyzed	Detected	Min Detected (mg/L)	Max Detected (mg/L)	Drinking Water Criteria	Ratio of Max Detect to Drinking Water Criteria
ON	Shallow Bedrock	SVOC	Diethylphthalate		Basis	∢ 27	3	1.60E-03	4.50E-03	(mg/L) 2.9E+01	1.6E-04
-				84-66-2			3				
ON ON	Shallow_Bedrock		2,4-Dimethylphenol	105-67-9		27	5	1.10E-03	1.10E-03	7.3E-01	1.5E-03
- · ·	Shallow_Bedrock	SVOC	Di-n-butylphthalate	84-74-2		27 27		7.30E-04 6.90E-04	5.30E-03 6.90E-04	3.7E+00 1.5E+00	1.4E-03 4.6E-04
ON	Shallow_Bedrock		Di-n-octylphthalate				1				
ON	Shallow_Bedrock	SVOC	Methylphenol (total)	1319-77-3	T	27	1	9.60E-03	9.60E-03	1.8E-01	5.3E-02
ON	Shallow_Bedrock		Phenol	108-95-2	Т	27	3	9.00E-03	1.20E-01	2.2E+01	5.5E-03
ON	Shallow_Bedrock	PCB	PCBs (total)	1336-36-3	D	43	4	6.80E-05	1.70E-03	5.0E-04	3.4E+00
ON	Shallow_Bedrock		PCBs (total)	1336-36-3		43	4	7.60E-05	4.30E-02	5.0E-04	8.6E+01
ON	Shallow_Bedrock		Aluminum	7429-90-5		25	1	3.30E-01	3.30E-01	3.7E+01	8.9E-03
ON	Shallow_Bedrock		Aluminum	7429-90-5	Т	25	1	3.30E-02	3.30E-02	3.7E+01	8.9E-04
ON	Shallow_Bedrock		Antimony	7440-36-0		25	1	4.30E-03	4.30E-03	6.0E-03	7.2E-01
ON	Shallow_Bedrock		Arsenic	7440-38-2		25	7	2.30E-03	1.30E-02	1.0E-02	1.3E+00
ON	Shallow_Bedrock		Arsenic	7440-38-2	Т	25	7	2.50E-03	1.20E-02	1.0E-02	1.2E+00
ON	Shallow_Bedrock	INORG	Barium	7440-39-3	D	25	24	3.00E-02	2.10E-01	2.0E+00	1.1E-01
ON	Shallow_Bedrock		Barium	7440-39-3		25	23	3.20E-02	2.20E-01	2.0E+00	1.1E-01
ON	Shallow_Bedrock	INORG	Cadmium	7440-43-9		25	2	3.20E-04	5.70E-04	5.0E-03	1.1E-01
ON	Shallow_Bedrock	INORG	Cadmium	7440-43-9		25	1	4.00E-04	4.00E-04	5.0E-03	8.0E-02
ON	Shallow_Bedrock	INORG	Chromium (total)	7440-47-3	D	25	3	3.60E-03	4.30E-01	1.0E-01	4.3E+00
ON	Shallow_Bedrock	INORG	Chromium (total)	7440-47-3	Т	25	6	2.50E-03	2.80E-01	1.0E-01	2.8E+00
ON	Shallow_Bedrock	INORG	Cobalt	7440-48-4	D	25	8	1.20E-03	1.00E-02	7.3E-01	1.4E-02
ON	Shallow_Bedrock	INORG	Cobalt	7440-48-4	Т	25	6	8.60E-04	9.80E-03	7.3E-01	1.3E-02
ON	Shallow_Bedrock	INORG	Copper	7440-50-8	D	25	2	2.50E-03	2.70E-03	1.3E+00	2.1E-03
ON	Shallow_Bedrock	INORG	Copper	7440-50-8	Т	25	2	2.60E-03	3.00E-03	1.3E+00	2.3E-03
ON	Shallow_Bedrock	INORG	Iron	7439-89-6	D	25	19	6.00E-02	1.70E+01	1.1E+01	1.5E+00
ON	Shallow Bedrock		Iron	7439-89-6	Т	25	25	6.40E-02	1.63E+01	1.1E+01	1.5E+00
ON	Shallow_Bedrock		Manganese	7439-96-5	D	25	23	1.80E-03	2.10E+00	8.8E-01	2.4E+00
ON	Shallow_Bedrock		Manganese	7439-96-5	Т	25	23	3.20E-03	2.40E+00	8.8E-01	2.7E+00
ON	Shallow Bedrock		Mercury	7439-97-6		25	2	9.60E-05	1.10E-04	2.0E-03	5.5E-02
ON	Shallow Bedrock		Mercury	7439-97-6		25	1	8.90E-05	8.90E-05	2.0E-03	4.5E-02
ON	Shallow_Bedrock		Nickel	7440-02-0		25	10	3.70E-03	3.00E-02	7.3E-01	4.1E-02
ON	Shallow Bedrock	INORG	Nickel	7440-02-0		25	10	3.10E-03	3.30E-02	7.3E-01	4.5E-02
ON	Shallow_Bedrock	INORG	Thallium	7440-28-0		25	1	4.10E-04	4.10E-04	2.0E-03	2.1E-01
ON	Shallow Bedrock	INORG	Thallium	7440-28-0		25	1	4.00E-04	4.00E-04	2.0E-03	2.0E-01
ON	Shallow Bedrock	INORG	Vanadium	7440-20-0		25	1	9.40E-04	9.40E-04	2.6E-01	3.6E-03
ON	Shallow_Bedrock	INORG	Vanadium	7440-02-2		25	1	9.90E-04	9.90E-04	2.6E-01	3.8E-03
ON	Shallow Bedrock	INORG	Zinc	7440-62-2		25	7	9.90E-04 1.40E-02	9.90E-04 5.90E-01	1.1E+01	5.4E-02
ON	Shallow Bedrock		Zinc	7440-66-6		25	14	1.70E-02	5.30E-01	1.1E+01	4.8E-02
ON	Intermediate_Bedrock	VOC	Acetone	67-64-1	T	15	14	2.50E-02	2.50E-01	3.7E+00	4.8E-02 6.8E-04
ON	Intermediate_Bedrock		2-Butanone	78-93-3		15	1	6.70E-03	2.50E-03 6.70E-04	2.2E+00	3.0E-04
ON	Intermediate Bedrock	VOC	Chloroform	67-66-3		15	3	8.20E-04	1.40E-04	8.0E-02	1.8E-02
ON	Intermediate_Bedrock		Methyl Acetate	79-20-9		15	3	8.20E-04 1.40E-03	1.40E-03	3.7E+01	3.8E-02
ON		VOC			Т			1.40E-03 5.40E-04	1.40E-03 5.40E-04		
	Intermediate_Bedrock		4-Methyl-2-pentanone	108-10-1	-	15	1			2.9E+00	1.9E-04
ON	Intermediate_Bedrock		Methylene Chloride	75-09-2		15	1	3.20E-04	3.20E-04	5.0E-03	6.4E-02
ON	Intermediate_Bedrock	VOC	Toluene	108-88-3		15	12	4.90E-04	1.60E-02	1.0E+00	1.6E-02
ON	Intermediate_Bedrock	SVOC	bis(2-Ethylhexyl)phthalate	117-81-7	T	15	1	4.13E-03	4.13E-03	6.0E-03	6.9E-01
ON	Intermediate_Bedrock	SVOC	Caprolactam	105-60-2	Т	15	1	1.80E-02	1.80E-02	1.8E+01	1.0E-03

On/Off- Site Hydrogeologic Unit Chem Group Chemical CASRN Measl Basis Tope Detected (mg/L) Detected (mg/L) Water (mg/L) ON Intermediate_Bedrock SVOC Diethylphthalate 84-66-2 T 15 11 5.38-04 5.90E-02 2.5 ON Intermediate_Bedrock SVOC Di-n-butylphthalate 84-74-2 T 15 1 3.40E-03 3.40E-03 7.3 ON Intermediate_Bedrock SVOC Di-n-butylphthalate 84-74-2 T 15 1 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 2.60E-03 2.60E-03 2.60E-03 2.60E-03 2.60E-03 2.00E-03 2.00E-03 2.00E-03 2.00E-03 3.00E-03 1.0.0N 1.01ermediate_Bedrock INORG Arsenic 7440-38-2 D 15 1 3.09E-01 3.00E-03 2.0 1.0N None-03 2.0 1.0N None-03 2.0 1.0N None-03 2.0	Ratio of Max Detect to Drinking g/L) Water Criteria E+01 2.0E-03 E+01 2.0E-03 E+00 5.1E-03 E+01 1.2E-04 E+01 1.2E-04 E+01 1.2E-04 E+01 1.2E-04 E+01 1.2E-04 E+01 1.9E-01 E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E+00 2.0E-01 E+00 2.0E-01 E+00 1.9E-01
On/Off- Site Hydrogeologic Unit Chem Group Chemical Chemical CASRN Basis Basis F Basis F Basis F Basis F Basis F Min Detected (mg/L) Max Detected (mg/L) Detected (mg/L) ON Intermediate_Bedrock SVOC Diethylphthalate 84-62.2 T 15 1 3.40E-03 3.40E-03 7.7 ON Intermediate_Bedrock SVOC Di-n-butylphthalate 84-74-2 T 15 1 3.40E-03 1.60E-03 1.60E-0	king Criteria Detect to Drinking g/L) Water Criteria E+01 2.0E-03 E-01 4.7E-03 E+00 5.1E-03 E+01 1.2E-04 E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 2.0E-01 E+00 2.0E-01 E+00 1.6E-01
ON Intermediate_Bedrock SVOC Diethylphthalate 84-66-2 T 15 11 5.43E-04 5.90E-02 2.5 ON Intermediate_Bedrock SVOC 2.4-Dimethylphthalate 84-74-2 T 15 9 6.40E-04 1.90E-02 3.7 ON Intermediate_Bedrock SVOC Methylphenol (total) 1319-77.3 T 15 1 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 1.60E-03 2.60E-03 3.89E-01 3.89E-01 3.89E-01 3.89E-01 3.89E-01 3.89E-01 3.89E-03 1.1 ON Intermediate_Bedrock INORG Antimony 7440-38-2 T 15 5 2.30E-03 4.30E-03 1.1 ON Intermediate_Bedrock INORG Barium 7440-38-3 T 15 15 5.20E-02 3.70E-01	E+01 2.0E-03 E-01 4.7E-03 E+00 5.1E-03 E+01 8.9E-03 E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E+00 1.6E-01
ON Intermediate_Bedrock SVOC 2,4-Dimethylphenol 105-67-9 T 15 1 3.40E-03 3.40E-03 7.2 ON Intermediate_Bedrock SVOC Di-n-butylphthalate 84-74-2 T 15 9 6.40E-04 1.90E-02 3.7 ON Intermediate_Bedrock SVOC Phenol 108-95-2 T 15 1 2.60E-03 2.60E-03 2.2 ON Intermediate_Bedrock INORG Aluminum 7429-90-5 T 15 1 2.60E-03 2.60E-03 2.60E-03 2.60E-03 4.00E-03 6.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 4 2.70E-03 3.90E-03 1.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 5 2.00-03 4.30E-03 1.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 5 2.00-03 1.90E-01	E-01 4.7E-03 E+00 5.1E-03 E-01 8.9E-03 E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 2.0E-01 E+03 1.6E-01
ON Intermediate_Bedrock SVOC Din-butylphthalate 84-74-2 T 15 9 6.40E-04 1.90E-02 3.7 ON Intermediate_Bedrock SVOC Methylphenol (total) 1319-77.3 T 15 1 1.60E-03 1.60E-03 1.2 ON Intermediate_Bedrock INORG Aluminum 7429-90-5 T 15 1 2.60E-03 2.2 ON Intermediate_Bedrock INORG Antimony 7440-38-0 D 15 1 4.00E-03 4.00E-03 6.40 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 4 2.70E-03 3.30E-03 1.1 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 T 15 5 2.00E-03 4.30E-03 1.1 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 5 2.00E-03 1.90E-01 1.0 ON Intermediate_Bedrock	E+00 5.1E-03 E-01 8.9E-03 E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 3.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 2.0E-01 E+03 1.6E-01
ON Intermediate_Bedrock SVOC Methylphenol (total) 1319-77-3 T 15 1 1.60E-03 1.60E-03 1.1 ON Intermediate_Bedrock SVOC Phenol 108-95-2 T 15 1 2.60E-03 2.60E-03 2.20E-03 2.60E-03 2.60E-03 2.60E-03 2.60E-03 4.00E-03 4.00E-	E-01 8.9E-03 E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock SVOC Phenol 108-95-2 T 15 1 2.60E-03 2.2.0 ON Intermediate_Bedrock INORG Aluminum 7429-90-5 T 15 1 3.89E-01 3.89E-01 3.7 ON Intermediate_Bedrock INORG Antimony 7440-36-0 D 15 1 4.00E-03 4.00E-03 6.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 5 2.30E-03 4.30E-03 1.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 D 15 15 5.20E-02 3.70E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 D 15 15 5.20E-02 3.70E-01 2.0 0.0 15 15 5.20E-02 4.00E-01 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0<	E+01 1.2E-04 E+01 1.1E-02 E-03 6.7E-01 E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Aluminum 7429-90-5 T 15 1 3.89E-01 3.7 ON Intermediate_Bedrock INORG Antimony 7740-36-0 D 15 1 4.00E-03 4.00E-03 6.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 4 2.70E-03 3.90E-03 1.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 T 15 5 2.30E-03 4.30E-03 1.1 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Beryllium 7440-41-7 T 15 1 6.20E-04 6.20E-04 4.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.90E-03 2.30E-03 2.30E-03 2.30E-03 1.0 0 10<	E+01 1.1E-02 E-03 6.7E-01 E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Antimony 7440-36-0 D 15 1 4.00E-03 4.00E-03 6.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 4 2.70E-03 3.90E-03 1.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 T 15 5 2.30E-03 4.30E-03 1.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-47-3 T 15 1 6.20E-04 6.20E-04 4.00E-01 2.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.90E-02 2.10E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 4.20E-03 3.10E-02 1.0 ON	E-03 6.7E-01 E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E+03 1.6E-01
ON Intermediate_Bedrock INORG Arsenic 7440-38-2 D 15 4 2.70E-03 3.90E-03 1.0 ON Intermediate_Bedrock INORG Arsenic 7440-38-2 T 15 5 2.30E-03 4.30E-03 1.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 D 15 15 5.20E-02 3.70E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-02 1.0 ON Intermediate_Bedrock <	E-02 3.9E-01 E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Arsenic 7440-38-2 T 15 5 2.30E-03 4.30E-03 1.1 ON Intermediate_Bedrock INORG Barium 7440-39-3 D 15 15 5.20E-02 3.70E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Beryllium 7440-41-7 T 15 1 6.20E-04 6.20E-04 4.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.5 ON Interme	E-02 4.3E-01 E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Barium 7440-39-3 D 15 15 5.20E-02 3.70E-01 2.0 ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Beryllium 7440-39-3 T 15 1 6.20E-04 6.20E-04 4.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 2 5.90E-02 2.10E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 2.30E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.98E-04 1.00E-03 7.3 ON <t< td=""><td>E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01</td></t<>	E+00 1.9E-01 E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Barium 7440-39-3 T 15 15 5.20E-02 4.00E-01 2.0 ON Intermediate_Bedrock INORG Beryllium 7440-41-7 T 15 1 6.20E-04 6.20E-04 4.00E-01 4.00E-01 1.00E ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.30E-03 2.30E-02 1.00E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 2.30E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 1 1.78E-03 1.78E	E+00 2.0E-01 E-03 1.6E-01
ON Intermediate_Bedrock INORG Beryllium 7440-41-7 T 15 1 6.20E-04 6.20E-04 4.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.90E-02 2.10E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 T 2 2 4.20E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-48-4 T 15 2 9.85E-04 1.00E-03 1.3 ON	E-03 1.6E-01
ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 D 15 3 7.50E-03 1.90E-01 1.0 ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.90E-02 2.10E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 2.30E-02 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 T 2 2 4.20E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 1 8.90E-02 4.40E+00 1.1 ON <td< td=""><td></td></td<>	
ON Intermediate_Bedrock INORG Chromium (total) 7440-47-3 T 15 2 5.90E-02 2.10E-01 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 2.30E-02 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 T 2 2 4.20E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Iron 7440-50-8 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 14 5.60E-02 4.40E+02 8.0 ON Intermediate_Bedrock <t< td=""><td></td></t<>	
ON Intermediate_Bedrock INORG Chromium III 16065-83-1 D 2 2 5.30E-03 2.30E-02 1.0 ON Intermediate_Bedrock INORG Chromium III 16065-83-1 T 2 2 4.20E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-50-8 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 13 8.90E-02 4.10E+00 1.1 ON Intermediate_Bedrock INORG Iron 7439-89-6 T 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG </td <td>E-01 2.1E+00</td>	E-01 2.1E+00
ON Intermediate_Bedrock INORG Chromium III 16065-83-1 T 2 2 4.20E-03 3.10E-02 1.0 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-50-8 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG Manganese 7439-96-5 D 15 11 4.10E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG <td>E-01 2.3E-01</td>	E-01 2.3E-01
ON Intermediate_Bedrock INORG Cobalt 7440-48-4 D 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 8.70E-04 1.20E-03 7.3 ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-50-8 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 13 8.90E-02 4.10E+00 1.1 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 11 4.10E-03 4.40E-02 8.9 ON Intermediate_Bedrock INORG Manganese 7439-96-5 D 15 11 4.10E-03 4.20E-02 8.9 ON Intermediate_Bedrock INORG	E-01 2.3E-01 E-01 3.1E-01
ON Intermediate_Bedrock INORG Cobalt 7440-48-4 T 15 2 9.85E-04 1.00E-03 7.3 ON Intermediate_Bedrock INORG Copper 7440-50-8 D 15 1 1.78E-03 1.4 1.6 1.6 1.4	E-01 1.6E-03
ON Intermediate_Bedrock INORG Copper 7440-50-8 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 1 1.78E-03 1.3 ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 13 8.90E-02 4.10E+00 1.1 ON Intermediate_Bedrock INORG Iron 7439-89-6 T 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG Manganese 7439-96-5 D 15 11 4.10E-03 4.40E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Nickel	E-01 1.4E-03
ON Intermediate_Bedrock INORG Iron 7439-89-6 D 15 13 8.90E-02 4.10E+00 1.1 ON Intermediate_Bedrock INORG Iron 7439-89-6 T 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG Manganese 7439-89-65 D 15 11 4.10E-03 4.40E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 4.10E-03 4.40E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG Nickel 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock	E+00 1.4E-03
ON Intermediate_Bedrock INORG Iron 7439-89-6 T 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG Manganese 7439-89-6 T 15 14 5.60E-02 4.80E+00 1.1 ON Intermediate_Bedrock INORG Manganese 7439-96-5 D 15 11 4.10E-03 4.40E-02 8.0 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.0 ON Intermediate_Bedrock INORG Nickel 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.20E-01 1.1 ON Intermediate_Bedrock	E+00 1.4E-00 E+01 3.7E-01
ON Intermediate_Bedrock INORG Manganese 7439-96-5 D 15 11 4.10E-03 4.40E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG Nickel 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Intermediate_Bedrock<	E+01 4.4E-01
ON Intermediate_Bedrock INORG Manganese 7439-96-5 T 15 11 3.80E-03 4.20E-02 8.8 ON Intermediate_Bedrock INORG Nickel 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Deep_Bedrock V	E-01 5.0E-02
ON Intermediate_Bedrock INORG Nickel 7440-02-0 D 15 4 3.00E-03 1.40E-02 7.3 ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Deep_Bedrock VOC Acetone 67-64-1 T 6 1 2.20E-02 2.20E-02 3.7 ON Deep_Bedrock VOC <t< td=""><td>E-01 4.8E-02</td></t<>	E-01 4.8E-02
ON Intermediate_Bedrock INORG Nickel 7440-02-0 T 15 5 2.50E-03 1.60E-02 7.3 ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Deep_Bedrock VOC Acetone 67-64-1 T 6 1 2.20E-02 2.20E-02 3.7 ON Deep_Bedrock VOC Bromodichloromethane 75-27-4 T 6 2 9.70E-04 2.20E-03 8.0	E-01 1.9E-02
ON Intermediate_Bedrock INORG Zinc 7440-66-6 D 15 7 1.05E-02 3.00E-01 1.1 ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Deep_Bedrock VOC Acetone 67-64-1 T 6 1 2.20E-02 2.20E-02 3.7 ON Deep_Bedrock VOC Bromodichloromethane 75-27-4 T 6 2 9.70E-04 2.20E-03 8.0	E-01 2.2E-02
ON Intermediate_Bedrock INORG Zinc 7440-66-6 T 15 8 1.40E-02 3.20E-01 1.1 ON Deep_Bedrock VOC Acetone 67-64-1 T 6 1 2.20E-02 2.20E-02 3.7 ON Deep_Bedrock VOC Bromodichloromethane 75-27-4 T 6 2 9.70E-04 2.20E-03 8.0	E+01 2.7E-02
ON Deep_Bedrock VOC Acetone 67-64-1 T 6 1 2.20E-02 2.20E-02 3.7 ON Deep_Bedrock VOC Bromodichloromethane 75-27-4 T 6 2 9.70E-04 2.20E-03 8.0	E+01 2.9E-02
ON Deep_Bedrock VOC Bromodichloromethane 75-27-4 T 6 2 9.70E-04 2.20E-03 8.0	E+00 5.9E-02
	E-02 2.8E-02
	E+01 2.2E-04
ON Deep_Bedrock VOC Carbon Disulfide 75-15-0 T 6 3 2.40E-04 3.50E-04 3.7	E+00 9.5E-05
	E-02 1.3E-01
ON Deep_bedrock VOC Onionini Origonal Or	
	E+01 8.9E-05
	E+00 2.1E-04
	E-03 8.2E-02
	E+00 9.7E-03
	E+01 1.4E-04
	E+01 5.6E-05
	E+01 5.6E-05 E+01 5.5E-04
	E+01 5.5E-04
	E+01 5.5E-04 E+00 3.2E-03
	E+01 5.5E-04 E+00 3.2E-03 E-01 1.6E-03
	E+01 5.5E-04 E+00 3.2E-03 E-01 1.6E-03 E-04 8.4E-02
ON Deep_Bedrock INORG Barium 7440-39-3 D 6 6 5.00E-02 8.90E-02 2.0	E+01 5.5E-04 E+00 3.2E-03 E-01 1.6E-03

			Table 2-1: Groundw	ater Screening	Result	s Sı	umn	nary			
			GM Powertrain Be	•							
On/Off-	Hydrogeologic				Meas	Analyzed	Detected	Min Detected	Max Detected	Drinking Water Criteria	Ratio of Max Detect to Drinking
Site	Unit	Chem Group	Chemical	CASRN	Basis			(mg/L)	(mg/L)	(mg/L)	Water Criteria
ON	Deep_Bedrock		Barium	7440-39-3		6	6	4.40E-02	9.80E-02	2.0E+00	4.9E-02
ON	Deep_Bedrock	INORG	Chromium (total)	7440-47-3		6	3	7.60E-03	1.10E+00	1.0E-01	1.1E+01
ON	Deep_Bedrock		Chromium (total)	7440-47-3		6	2	1.50E-01	1.30E+00	1.0E-01	1.3E+01
ON	Deep_Bedrock	INORG	Cobalt	7440-48-4		6	1	2.00E-03	2.00E-03	7.3E-01	2.7E-03
ON	Deep_Bedrock	INORG	Cobalt	7440-48-4	Т	6	1	1.70E-03	1.70E-03	7.3E-01	2.3E-03
ON	Deep_Bedrock		Copper	7440-50-8	D	6	1	1.50E-02	1.50E-02	1.3E+00	1.2E-02
ON	Deep_Bedrock	INORG	Copper	7440-50-8	Т	6	1	3.70E-02	3.70E-02	1.3E+00	2.8E-02
ON	Deep_Bedrock	INORG	Iron	7439-89-6		6	5	1.00E-01	7.70E-01	1.1E+01	7.0E-02
ON	Deep_Bedrock	INORG	Iron	7439-89-6		6	5	1.70E-01	9.40E-01	1.1E+01	8.5E-02
ON	Deep_Bedrock		Manganese	7439-96-5	D	6	5	1.60E-02	4.00E-02	8.8E-01	4.5E-02
ON	Deep_Bedrock	INORG	Manganese	7439-96-5		6	6	7.60E-03	3.80E-02	8.8E-01	4.3E-02
ON	Deep_Bedrock	INORG	Nickel	7440-02-0	D	6	3	6.20E-03	1.80E-02	7.3E-01	2.5E-02
ON	Deep_Bedrock		Nickel	7440-02-0		6	3	5.20E-03	2.20E-02	7.3E-01	3.0E-02
ON	Deep_Bedrock	INORG	Selenium	7782-49-2	D	6	1	9.80E-03	9.80E-03	5.0E-02	2.0E-01
ON	Deep_Bedrock	INORG	Selenium	7782-49-2	Т	6	1	1.30E-02	1.30E-02	5.0E-02	2.6E-01
ON	Deep_Bedrock	INORG	Silver	7440-22-4	Т	6	1	9.80E-04	9.80E-04	1.8E-01	5.4E-03
ON	Deep_Bedrock	INORG	Zinc	7440-66-6	D	6	2	3.40E-02	2.90E-01	1.1E+01	2.6E-02
ON	Deep_Bedrock	INORG	Zinc	7440-66-6	Т	6	5	1.50E-02	4.00E-01	1.1E+01	3.6E-02
OFF	Shallow_Bedrock	VOC	Acetone	67-64-1	Т	10	1	9.40E-04	9.40E-04	3.7E+00	2.5E-04
OFF	Shallow_Bedrock	VOC	Chlorobenzene	108-90-7	Т	10	1	2.40E-04	2.40E-04	1.0E-01	2.4E-03
OFF	Shallow_Bedrock	VOC	Chloroform	67-66-3	Т	10	3	1.20E-04	4.20E-04	8.0E-02	5.3E-03
OFF	Shallow_Bedrock	VOC	Chloromethane	74-87-3	Т	10	2	1.70E-04	2.00E-04	5.2E-02	3.8E-03
OFF	Shallow_Bedrock	VOC	cis-1,2-Dichloroethene	156-59-2	Т	10	1	3.60E-03	3.60E-03	7.0E-02	5.1E-02
OFF	Shallow Bedrock	VOC	trans-1,2-Dichloroethene	156-60-5	Т	10	1	5.00E-04	5.00E-04	1.0E-01	5.0E-03
OFF	Shallow Bedrock	VOC	Toluene	108-88-3		10	2	1.90E-04	1.90E-04	1.0E+00	1.9E-04
OFF	Shallow_Bedrock	VOC	Trichloroethene	79-01-6	Т	10	1	3.70E-04	3.70E-04	5.0E-03	7.4E-02
OFF	Shallow Bedrock	VOC	Vinyl Chloride	75-01-4		10	1	8.60E-04	8.60E-04	2.0E-03	4.3E-01
OFF	Shallow Bedrock	SVOC	Butylbenzylphthalate	85-68-7	T	10	1	5.10E-04	5.10E-04	7.3E+00	7.0E-05
OFF	Shallow Bedrock	SVOC	Caprolactam	105-60-2		10	1	2.60E-01	2.60E-01	1.8E+01	1.4E-02
OFF	Shallow_Bedrock		Di-n-octylphthalate	117-84-0		10	1	1.45E-03	1.45E-03	1.5E+00	9.7E-04
OFF	Shallow Bedrock	PCB	PCBs (total)	1336-36-3	T	26	1	1.50E-04	1.50E-04	5.0E-04	3.0E-01
OFF	Shallow_Bedrock	INORG	Aluminum	7429-90-5	-	8	1	1.55E-01	1.55E-01	3.7E+01	4.2E-03
OFF	Shallow Bedrock	INORG	Aluminum	7429-90-5		8	2	5.00E-02	1.55E-01	3.7E+01	4.2E-03
OFF	Shallow Bedrock	INORG	Arsenic	7429-90-3	D	8	1	2.05E-02	2.05E-03	1.0E-02	2.1E-01
OFF	Shallow_Bedrock	INORG	Arsenic	7440-38-2	Т	8	1	6.00E-03	6.00E-03	1.0E-02	6.0E-01
OFF	Shallow Bedrock	INORG	Barium	7440-38-2	D	8	8	5.60E-03	1.30E-03	2.0E+00	6.5E-02
OFF	Shallow Bedrock		Barium	7440-39-3	T	о 8	0 8	5.80E-03	1.40E-01	2.0E+00 2.0E+00	7.0E-02
OFF	Shallow_Bedrock	INORG	Cadmium	7440-39-3	-	0 8	0 1	2.45E-04	2.45E-01	5.0E-03	4.9E-02
OFF	Shallow_Bedrock	INORG	Cadmium	7440-43-9		о 8	1	2.45E-04 2.15E-04	2.45E-04 2.15E-04	5.0E-03	4.9E-02 4.3E-02
OFF	Shallow Bedrock	INORG	Chromium (total)	7440-43-9	T	0 8	1	2.15E-04 2.35E-03	2.15E-04 2.35E-03	1.0E-01	4.3E-02 2.4E-02
OFF	Shallow_Bedrock	INORG		7440-47-3	Т	8	1		2.35E-03 3.60E-03	1.0E-01 1.3E+00	2.4E-02 2.8E-03
OFF		INORG	Copper		-		4	3.60E-03 5.30E-02			2.8E-03 7.5E-02
OFF	Shallow_Bedrock		Iron	7439-89-6		8	4		8.30E-01	1.1E+01	7.5E-02 1.0E-01
	Shallow_Bedrock	INORG	Iron	7439-89-6		8	-	1.60E-01	1.10E+00	1.1E+01	
OFF	Shallow_Bedrock	INORG	Lead	7439-92-1	Т	8	1	2.80E-03	2.80E-03	1.5E-02	1.9E-01
OFF	Shallow_Bedrock	INORG	Manganese	7439-96-5		8	7	3.30E-03	5.90E-02	8.8E-01	6.7E-02
OFF	Shallow_Bedrock	INORG	Manganese	7439-96-5	I	8	7	5.50E-03	6.80E-02	8.8E-01	7.7E-02

			Table 2-1: Groundwate GM Powertrain Bedfo								
On/Off-	Hydrogeologic				Meas	Analyzed	Detected	Min Detected	Max Detected	Drinking Water Criteria	Ratio of Max Detect to Drinking
Site	Unit	Chem Group	Chemical	CASRN	Basis	Ar		(mg/L)	(mg/L)	(mg/L)	Water Criteria
OFF	Shallow_Bedrock		Nickel	7440-02-0		8	3	4.80E-03	1.60E-02	7.3E-01	2.2E-02
OFF	Shallow_Bedrock		Nickel	7440-02-0		8	3	5.70E-03	1.50E-02	7.3E-01	2.1E-02
OFF	Shallow_Bedrock		Silver	7440-22-4	D	8	1	8.35E-04	8.35E-04	1.8E-01	4.6E-03
OFF	Shallow_Bedrock		Silver	7440-22-4	Т	8	1	5.65E-04	5.65E-04	1.8E-01	3.1E-03
OFF	Shallow_Bedrock	INORG	Vanadium	7440-62-2	D	8	1	5.05E-03	5.05E-03	2.6E-01	1.9E-02
OFF	Shallow_Bedrock	INORG	Vanadium	7440-62-2		8	1	4.80E-03	4.80E-03	2.6E-01	1.8E-02
OFF	Shallow_Bedrock		Zinc	7440-66-6		8	5	2.40E-02	1.40E-01	1.1E+01	1.3E-02
OFF	Shallow_Bedrock	INORG	Zinc	7440-66-6	Т	8	5	2.50E-02	2.20E-01	1.1E+01	2.0E-02
	Notes:										
	Only constituents detect	ted in the most	recent groundwater data from monito	ring wells in eac	ch hydro	geol	ogic ı	unit are shown	•		
	Shaded cells represent	ratios of conc t	to screening criteria greater than 1.								
	The Screening Criteria	hierarchy is Sta	ate MCL, Fed MCL, the lower of Regio	n 9 tap water in	gestion	value	es at	a cancer risk o	of 1E-5 or haza	ard quotient of 1.	
	The Screening Criteria	for Naphthalen	e were used as a surrogate for 2-Meth	ylnaphthalene.							
			/I was used as a surrogate for Chromi								
			nol (2, 3, & 4) were summed before cor				iteria	for 4-Methylph	nenol.		
	The concentrations for a	all Aroclors wei	re summed before comparing to the So	creening Criteria	a for PC	Bs.					
	The concentrations for the	the Xylene ison	ners (m/p and o) were summed before	comparing to t	he Scree	ening	crit	eria.			
	Chem Group - Chemica	al Group									
	Meas Basis - Measured	Basis; T = Tot	al, D = Dissolved								

	Table 2-2: Spring Water Screening Results Summary										
		GM Powert	rain Bedford	Facilit	y, B	Bedf	ord, Indiar	na			
					Analyzed	Detected	Min	Max	Drinking	Ratio of Max Detect to Drinking	
On/Off-	Chem			Meas	al)	tec	Detected	Detected	Water Criteria	Water	
Site	Group	Chemical	CASRN	Basis	An	De	(mg/L)	(mg/L)	(mg/L)	Criteria	
ON	VOC	Carbon Disulfide	75-15-0	Т	1	1	3.70E-04	3.70E-04	3.7E+00	1.0E-04	
ON	VOC	Chlorobenzene	108-90-7	Т	1	1	2.90E-04	2.90E-04	1.0E-01	2.9E-03	
ON	VOC	1,4-Dichlorobenzene	106-46-7	Т	1		2.70E-04	2.70E-04	7.5E-02	3.6E-03	
ON	PCB	PCBs (total)	1336-36-3	Т	21	18		7.90E-01	5.0E-04	1.6E+03	
ON	INORG	Aluminum	7429-90-5	Т	1	1		5.62E+01	3.7E+01	1.5E+00	
ON	INORG	Antimony	7440-36-0	Т	1	1		4.30E-03	6.0E-03	7.2E-01	
ON	INORG	Arsenic	7440-38-2	Т	1	1		8.10E-02	1.0E-02	8.1E+00	
ON	INORG	Barium	7440-39-3	D	1	1	9.30E-02	9.30E-02	2.0E+00	4.7E-02	
ON	INORG	Barium	7440-39-3	Т	1			8.90E-01	2.0E+00	4.5E-01	
ON	INORG	Beryllium	7440-41-7	Т	1			1.40E-03	4.0E-03	3.5E-01	
ON	INORG	Chromium (total)	7440-47-3	Т	1			8.70E-02	1.0E-01	8.7E-01	
ON	INORG	Cobalt	7440-48-4	Т	1	1	1.20E-01	1.20E-01	7.3E-01	1.6E-01	
ON	INORG	Copper	7440-50-8	Т	1	1	3.80E-01	3.80E-01	1.3E+00	2.9E-01	
ON	INORG	Iron	7439-89-6	Т	1			3.06E+02	1.1E+01	2.8E+01	
ON	INORG	Lead	7439-92-1	Т	1	1		6.70E-02	1.5E-02	4.5E+00	
ON	INORG	Manganese	7439-96-5	D	1			7.10E-01	8.8E-01	8.1E-01	
ON	INORG	Manganese	7439-96-5	Т	1			5.74E+01	8.8E-01	6.5E+01	
ON	INORG	Mercury	7439-97-6		1			5.80E-04	2.0E-03	2.9E-01	
ON	INORG	Nickel	7440-02-0		1			1.50E-01	7.3E-01	2.1E-01	
ON	INORG	Silver	7440-22-4	Т	1			3.10E-03	1.8E-01	1.7E-02	
ON	INORG	Vanadium	7440-62-2	Т	1			9.60E-02	2.6E-01	3.7E-01	
ON	INORG	Zinc	7440-66-6	Т	1			4.20E-01	1.1E+01	3.8E-02	
OFF	VOC	Benzene	71-43-2	Т	1			1.70E-04	5.0E-03	3.4E-02	
OFF	VOC	Ethyl Benzene	100-41-4	Т	1			3.30E-04	7.0E-01	4.7E-04	
OFF	VOC	Methyl tert-butyl ether	1634-04-4	Т	1			3.50E-04	2.0E-01	1.8E-03	
OFF	VOC	Toluene	108-88-3	Т	1		9.10E-04	9.10E-04	1.0E+00	9.1E-04	
OFF	VOC	Xylenes (total)	1330-20-7	Т	1			4.40E-04	1.0E+01	4.4E-05	
OFF	SVOC	Acenaphthene	83-32-9	Т	1			9.50E-04	2.2E+00	4.3E-04	
OFF	SVOC	bis(2-Ethylhexyl)phthalate	117-81-7	Т	1			3.50E-03	6.0E-03	5.8E-01	
OFF	SVOC	2-Methylnaphthalene	91-57-6	Т	1			8.20E-04	7.3E-01	1.1E-03	
OFF	SVOC	Naphthalene	91-20-3	Т	1			4.30E-03	7.3E-01	5.9E-03	
OFF	SVOC	Phenanthrene	85-01-8	Т	1		9.90E-04	9.90E-04	1.1E+00	9.0E-04	
OFF	PCB	PCBs (total)	1336-36-3	D	74			1.80E-03	5.0E-04	3.6E+00	
OFF	PCB	PCBs (total)	1336-36-3	Т	76			8.10E-01	5.0E-04	1.6E+03	
OFF	INORG	Aluminum	7429-90-5	Т	1			1.30E+00	3.7E+01	3.5E-02	
OFF	INORG	Barium	7440-39-3	D	1			2.50E-01	2.0E+00	1.3E-01	
OFF	INORG	Barium	7440-39-3	Т	1			2.60E-01	2.0E+00	1.3E-01	
OFF	INORG	Chromium (total)	7440-47-3	D	1			2.00E-03	1.0E-01	2.0E-02	
OFF	INORG	Chromium (total)	7440-47-3	Т	1		3.60E-03	3.60E-03	1.0E-01	3.6E-02	
OFF	INORG	Iron	7439-89-6	D	1	1	3.99E+01	3.99E+01	1.1E+01	3.6E+00	

		Table 2-2: Sprin	g Water S	creeni	ng F	Resi	ults Summ	ary		
		GM Powertrai	n Bedford	Facilit	у, В	edf	ord, Indiar	้าล		
On/Off- Site	Chem Group	Chemical	CASRN	Meas Basis	Analyzed	Detected	Min Detected (mg/L)	Max Detected (mg/L)	Drinking Water Criteria (mg/L)	Ratio of Max Detect to Drinking Water Criteria
OFF	INORG	Iron	7439-89-6	Т	1	1	4.26E+01	4.26E+01	1.1E+01	3.9E+00
OFF	INORG	Lead	7439-92-1	Т	1	1	4.10E-03	4.10E-03	1.5E-02	2.7E-01
OFF	INORG	Manganese	7439-96-5	D	1	1	3.10E+00	3.10E+00	8.8E-01	3.5E+00
OFF	INORG	Manganese	7439-96-5	Т	1	1	3.10E+00	3.10E+00	8.8E-01	3.5E+00
OFF	INORG	Mercury	7439-97-6	D	1	1		3.40E-04	2.0E-03	1.7E-01
OFF	INORG	Mercury	7439-97-6		1	1	4.40E-04	4.40E-04	2.0E-03	2.2E-01
OFF	INORG	Vanadium	7440-62-2	Т	1	1	2.20E-03	2.20E-03	2.6E-01	8.5E-03
OFF	INORG	Zinc	7440-66-6	D	1	1	1.30E-02	1.30E-02	1.1E+01	1.2E-03
OFF	INORG	Zinc	7440-66-6	Т	1	1	1.00E-01	1.00E-01	1.1E+01	9.1E-03
Notes:										
		etected in the most recent on-site and			lata a	are s	hown.			
		sent ratios of conc to screening criteria								
		eria hierarchy is State MCL, Fed MCL,	the lower of I	Region 9	tap	wate	er ingestion va	alues at a ca	ncer risk of 1E-5	or
	quotient of									
		eria for Pyrene were used as surrogate								
		eria for Naphthalene were used as a su					ne.			
		eria for Chromium VI was used as a su								
		for all Aroclors were summed before of								
The con	centrations	for the Xylene isomers (m/p and o) we	ere summed b	pefore co	mpa	ring	to the Screer	ning Criteria.		
		mical Group								
Meas Ba	asis - Meas	ured Basis; T = Total, D = Dissolved								

		Table 2-3: Resid GM Powertra			istern Sampl ity, Bedford,	-	S			
Matrix	Property	Location Name	Sample Date	Meas Basis	Chemical	Conc (mg/L)	Qual	Limit (mg/L)	Drinking Water Criterion (mg/L)	Detect to Drinking Water Criterion
Well Water	216 Rawlins Mill Road	216 Rawlins Mill Road	06/09/06	D	PCBs (total)	1.30E-04	J	7.30E-05	5E-04	3E-01
Well Water	216 Rawlins Mill Road	216 Rawlins Mill Road	06/09/06	Т	PCBs (total)		U	7.30E-05	5E-04	
Well Water	228 Madison Street	228 Madison Street	03/03/03	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	228 Madison Street	228 Madison Street	03/03/03	Т	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P424	325 Heltonville Road	08/11/04	D	PCBs (total)		U	8.20E-05	5E-04	
Well Water	P424	325 Heltonville Road	08/11/04	Т	PCBs (total)		U	8.20E-05	5E-04	
Well Water	412 Peerless Rd	412 Peerless Rd	06/10/03	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	412 Peerless Rd	412 Peerless Rd	06/10/03	Т	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P408	550 North Jackson Street	03/25/03	D	PCBs (total)		UJ	9.10E-05	5E-04	
Well Water	P408	550 North Jackson Street	03/25/03	Т	PCBs (total)		UJ	9.10E-05	5E-04	
Well Water	612 E Street	612 E Street	05/15/03	D	PCBs (total)		UJ	9.10E-05	5E-04	
Well Water	612 E Street	612 E Street	05/15/03	Т	PCBs (total)		UJ	9.10E-05	5E-04	
Well Water	P423	985 Peerless Road	07/29/04	D	PCBs (total)		U	9.10E-05	5E-04	
Well Water	P423	985 Peerless Road	07/29/04	Т	PCBs (total)		U	9.10E-05	5E-04	
Well Water	P013	PARCEL 13 WELL	10/01/01	T	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P368	PARCEL 14 WELL	07/24/01	Т	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P015	PARCEL 15 WELL	02/12/02	Ť	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P018	PARCEL 18 WELL	04/09/02	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P018	PARCEL 18 WELL	04/09/02	T	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P020/P296	PARCEL 20/296 WELL	06/21/06	D	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P020/P296	PARCEL 20/296 WELL	06/21/06	T	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P208	PARCEL 208 WELL	03/13/07	D	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P208	PARCEL 208 WELL	03/13/07	Т	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P209/P210	PARCEL 209 210 WELL	05/07/02	D	PCBs (total)		U	1.05E-04	5E-04	
Well Water	P209/P210	PARCEL 209 210 WELL	05/07/02	Т	PCBs (total)		U	5.55E-03	5E-04	
Well Water	P211/P212	PARCEL 211 212 WELL	03/28/02	D	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P211/P212	PARCEL 211 212 WELL	03/28/02	Т	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P217	PARCEL 217 WELL	01/29/02	T	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P028	PARCEL 28 WELL 001	04/17/02	D	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P028	PARCEL 28 WELL 001	04/17/02	T	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P028	PARCEL 28 WELL 001 PARCEL 28 WELL 002	04/17/02	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P028	PARCEL 28 WELL 002 PARCEL 28 WELL 002	04/17/02	T	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P028 P292	PARCEL 28 WELL 002 PARCEL 292 WELL	03/21/02	D	PCBs (total)		U	1.00E-04	5E-04 5E-04	
Well Water	P292 P292	PARCEL 292 WELL PARCEL 292 WELL	03/21/02	T	PCBs (total)		U	1.00E-04	5E-04 5E-04	
Well Water	P292 P295	PARCEL 292 WELL	06/06/02	D	PCBs (total)	-	U	1.00E-04	5E-04	
Well Water	P295 P295	PARCEL 295 WELL	06/06/02	T	PCBs (total)		U	1.05E-04 1.05E-04	5E-04 5E-04	
				T	PCBs (total)		U		5E-04 5E-04	
Well Water Well Water	P368 P372	PARCEL 368 WELL	07/26/01 04/15/02	D	PCBs (total) PCBs (total)		UJ	1.00E-04 1.00E-04	5E-04 5E-04	
		PARCEL 372 WELL								
Well Water	P372	PARCEL 372 WELL	04/15/02	Т	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P388	PARCEL 388 WELL	03/13/07	D	PCBs (total)		U	7.30E-05	5E-04	

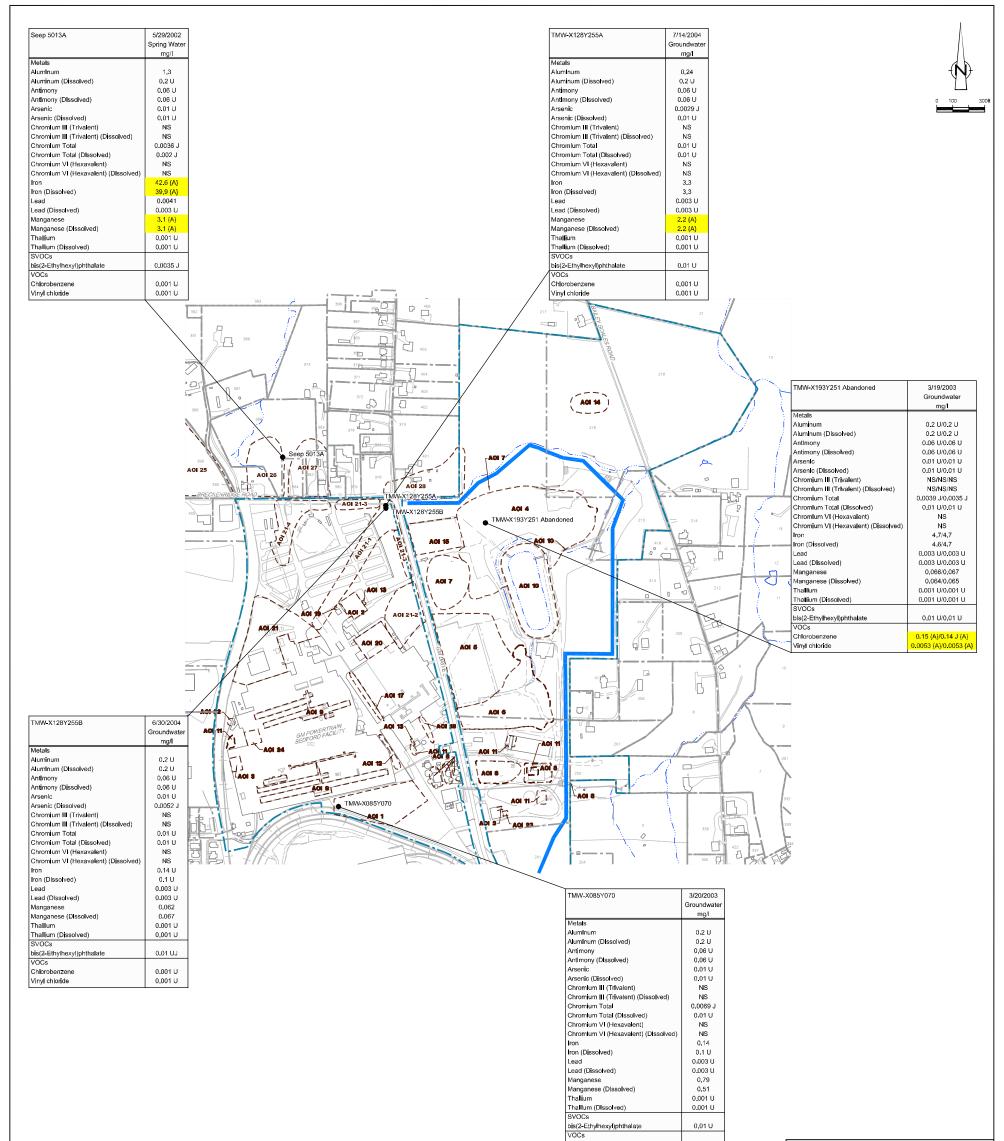
		Table 2-3: Resider			•	-	s			
		GM Powertrain	n Bedford	l Facili	ty, Bedford, I	ndiana				
									Drinking Water	Detect to
			Sample	Meas		Conc		Limit	Criterion	Drinking Water
Matrix	Property	Location Name	Date	Basis	Chemical	(mg/L)	Qual	(mg/L)	(mg/L)	Criterion
Well Water	P388	PARCEL 388 WELL	03/13/07	Т	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P390/392	PARCEL 390/392 WELL	06/16/06		PCBs (total)		UJ	7.30E-05	5E-04	
Well Water	P390/392	PARCEL 390/392 WELL	06/16/06		PCBs (total)		U	7.30E-05	5E-04	
Well Water	P394	PARCEL 394 WELL	06/07/02		PCBs (total)		U	1.05E-04	5E-04	
Well Water	P394	PARCEL 394 WELL	06/07/02	Т	PCBs (total)		U	1.05E-04	5E-04	
Well Water	P412	PARCEL 412 WELL	05/30/02		PCBs (total)		U	1.05E-04	5E-04	
Well Water	P412	PARCEL 412 WELL	05/30/02		PCBs (total)		UJ	1.05E-04	5E-04	
Well Water	P413	PARCEL 413 WELL	06/06/06		PCBs (total)		U	7.30E-05	5E-04	
Well Water	P413	PARCEL 413 WELL	06/06/06		PCBs (total)		U	7.30E-05	5E-04	
Well Water	P414	PARCEL 414 WELL	06/06/06	D	PCBs (total)		U	7.30E-05	5E-04	
Well Water	P414	PARCEL 414 WELL	06/06/06		PCBs (total)		U	7.30E-05	5E-04	
Well Water	P415	PARCEL 415 WELL	04/02/02	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P415	PARCEL 415 WELL	04/02/02	Т	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P416	PARCEL 416 WELL	05/31/02	D	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P416	PARCEL 416 WELL	05/31/02	Т	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P005	PARCEL 5 E.WELL	04/10/02	D	PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P005	PARCEL 5 E.WELL	04/10/02		PCBs (total)		UJ	1.00E-04	5E-04	
Well Water	P005	PARCEL 5 W.WELL	04/10/02	D	PCBs (total)		U	1.00E-04	5E-04	
Well Water	P005	PARCEL 5 W.WELL	04/10/02	Т	PCBs (total)		U	1.00E-04	5E-04	
Liquid Emulsion	P207	PARCEL 207 WELL	01/18/07	Т	PCBs (total)	6.60E-01		3.60E-02	5E-04	1E+03
Cistern Water	1326 3rd Street	CISTERN 1326 3rd ST	08/02/01		PCBs (total)		U	1.00E-04	5E-04	
Cistern Water	P064	CISTERN 1537 BRECKENRIDGE	08/02/01	Т	PCBs (total)		U	1.00E-04	5E-04	
Cistern Water	202 N STREET	CISTERN 202 N ST	01/29/02	Т	PCBs (total)		U	1.00E-04	5E-04	
Cistern Water	406 J Street	CISTERN 406 J ST	08/02/01	Т	PCBs (total)		U	1.00E-04	5E-04	
Cistern Water	411 L Street	CISTERN 411 L ST	08/01/01	Т	PCBs (total)		U	1.00E-04	5E-04	
Notes:										
		a from residential properties are show								
The concentration	ns for all Aroclors were	summed before comparing to the dr	inking wate	r criterio	n for PCBs.					
Shaded cells repr	resent ratios of conc to	screening criterion greater than 1.								
	er criterion for PCBs (to									
Meas Basis - Mea	asured Basis; T = Tota	I (unfiltered), D = Dissolved (filtered)								
Limit - Laboratory	analytical limit									
Data Qualifiers										
U - Non-detect										
J - Estimated										

	Tal		-		ceeding Screening C Facility, Bedford, Ind		PCBs	
On/Off Site	Wellzone	Location	Sample Date	Meas Basis	Chemical	Conc (mg/L)	Drinking Water Criterion (mg/L)	Ratio of Max Detect to Drinking Water Criterion
ON	Overburden	TMW-X193Y251	03/19/03	D	PCBs (total)	1.02E-03	5E-04	2E+00
ON	Overburden	TMW-X193Y251	03/19/03	Т	PCBs (total)	2.20E-03	5E-04	4E+00
ON	Shallow_Bedrock	B-X143Y193CG	02/25/08	D	PCBs (total)	1.70E-03	5E-04	3E+00
ON	Shallow_Bedrock	B-X143Y193CG	02/25/08	Т	PCBs (total)	2.98E-03	5E-04	6E+00
ON	Shallow_Bedrock	MW-X233Y087S	03/14/03	D	PCBs (total)	1.20E-03	5E-04	2E+00
ON	Shallow_Bedrock	MW-X233Y087S	03/14/03	Т	PCBs (total)	4.30E-02	5E-04	9E+01
Notes:								
	ing water criterion for PO	· · · · ·						
					inking water criterion for PC	CBs.		
	ells represent ratios of c	5	<u> </u>					
Meas Bas	sis - Measured Basis; T	= Total (unfiltered), D =	Dissolved (filtered)				

	Table 2-4b: Spring Water Samples Exceeding Screening Criterion for PCBs												
		G	SM Pov	vertrain	Bedford Facility	, Bedford, In	diana						
On/Off		Sample	Meas	Chem		Conc	Drinking Water Criterion	Ratio of Max Detect to Drinking Water					
Site	Location Name	Date	Basis	Group	Chemical	(mg/L)	(mg/L)	Criterion	Captured By				
ON	Eastern Seep Area 01	10/21/04	T	PCB	PCBs (total)	5.30E-02	5E-04	1E+02	SCC D				
ON	Eastern Seep Area 02	08/17/04	Т	PCB	PCBs (total)	4.60E-02	5E-04	9E+01	SSC C				
OFF	Spring 018B	08/02/05	Т	PCB	PCBs (total)	5.40E-03	5E-04	1E+01	Removed				
OFF	Spring 018C	03/18/08	Т	PCB	PCBs (total)	5.40E-04	5E-04	1E+00	Captured at Spring 018C				
OFF	Spring 021-002	10/20/04	Т	PCB	PCBs (total)	2.50E-02	5E-04	5E+01	Removed				
OFF	Spring 021-003	08/13/04	Т	PCB	PCBs (total)	9.40E-04	5E-04	2E+00	Removed				
OFF	Spring 021-005	12/16/04	D	PCB	PCBs (total)	1.80E-03	5E-04	4E+00	Removed				
OFF	Spring 021-005	12/16/04	Т	PCB	PCBs (total)	8.10E-01	5E-04	2E+03	Removed				
ON	Spring 201-003	12/07/06	Т	PCB	PCBs (total)	5.60E-04	5E-04	1E+00	Captured in Sump				
ON	Spring A	10/21/04	Т	PCB	PCBs (total)	1.45E-02	5E-04	3E+01	SSC A				
ON	Spring B	10/21/04	Т	PCB	PCBs (total)	7.70E-04	5E-04	2E+00	SSC A				
ON	Spring C	10/21/04	Т	PCB	PCBs (total)	2.30E-03	5E-04	5E+00	SSC E				
ON	Spring D	10/21/04	Т	PCB	PCBs (total)	2.95E-03	5E-04	6E+00	SSC F				
ON	Spring E	10/21/04	Т	PCB	PCBs (total)	6.40E-04	5E-04	1E+00	SSC F				
ON	Spring East of Storm Pond-2	06/01/04	Т	PCB	PCBs (total)	5.87E-03	5E-04	1E+01	SSC B				
ON	Spring F	10/21/04	Т	PCB	PCBs (total)	3.52E-03	5E-04	7E+00	SSC G				
ON	Spring G	10/21/04	Т	PCB	PCBs (total)	3.50E-03	5E-04	7E+00	SSC G				
ON	Spring H	10/21/04	Т	PCB	PCBs (total)	7.90E-01	5E-04	2E+03	SSC H				
ON	Spring I	02/02/05	Т	PCB	PCBs (total)	1.10E-03	5E-04	2E+00	SCC I-M				
ON	Spring L	01/12/05	Т	PCB	PCBs (total)	4.43E-03	5E-04	9E+00	SCC I-M				
ON	Spring M	01/12/05	Т	PCB	PCBs (total)	1.10E-03	5E-04	2E+00	SCC I-M				
ON	Spring N	04/18/06	Т	PCB	PCBs (total)	5.70E-03	5E-04	1E+01	SSC F				
ON	SW-X216Y274	05/21/02	Т	PCB	PCBs (total)	4.60E-03	5E-04	9E+00	SSC A				
Notes:													
SSC = Sit	te Source Control												
The drink	ing water criterion for PCBs (tot	tal) is the M	CL.										
The conc	entrations for all Aroclors were	summed be	fore com	paring to	the drinking water crit	terion for PCBs.							
Shaded c	ells represent ratios of conc to	screening cr	riteria gre	eater than	1.								
Meas Bas	sis - Measured Basis; T = Total	(unfiltered),	D = Diss	solved (filt	ered)								

On/Off- Site ON			wertrain Bed							
	Chem Group	Chemical	CASRN	Meas Basis	Matrix	Analyzed	Detected	Min Detected	Max Detected	Units
UN	VOC	Benzene	71-43-2	Т	Liquid Emulsion	2	1	4.30E-04	4.30E-04	MG/L
ON	VOC	Bromodichloromethane	75-27-4		Liquid Emulsion	2	1	5.70E-04	5.70E-04	MG/L
ON	VOC	Carbon Disulfide	75-15-0		Liquid Emulsion	2	1	3.70E-04	3.70E-04	MG/L
ON ON	VOC VOC	Chloroform	67-66-3	T T	Liquid Emulsion Liquid Emulsion	2	1 1	6.70E-03 1.30E-04	6.70E-03 1.30E-04	MG/L MG/L
ON	VOC	Cyclohexane 1,3-Dichlorobenzene	541-73-1	T	Liquid Emulsion	2	1	3.30E-04	3.30E-04	MG/L
ON	VOC	1,4-Dichlorobenzene	106-46-7	Ť	Liquid Emulsion	2	1	5.40E-04	5.40E-04	MG/L
ON	VOC	Ethyl Benzene	100-41-4	Т	Liquid Emulsion	2	1	2.60E-04	2.60E-04	MG/L
ON	VOC	Toluene	108-88-3		Liquid Emulsion	2	1	1.90E-02	1.90E-02	MG/L
ON	VOC	1,2,4-Trichlorobenzene	120-82-1	T	Liquid Emulsion	2	1	4.20E-04	4.20E-04	MG/L
ON ON	VOC SVOC	Xylenes (total) Acenaphthene	1330-20-7 83-32-9	T T	Liquid Emulsion Liquid Emulsion	2	1	9.20E-04 8.70E-03	9.20E-04 8.70E-03	MG/L MG/L
ON	SVOC	Biphenyl	92-52-4		Liquid Emulsion	2	1	3.80E-03	3.80E-03	MG/L
ON	SVOC	2,4-Dimethylphenol	105-67-9		Liquid Emulsion	2	1	7.00E-02	7.00E-02	MG/L
ON	SVOC	Methylphenol (total)	1319-77-3		Liquid Emulsion	2	1	2.06E-02	2.06E-02	MG/L
ON	SVOC	Phenol	108-95-2	Т	Liquid Emulsion	2	1	5.70E-02	5.70E-02	MG/L
ON	PCB	PCBs (total)	1336-36-3		Liquid Emulsion	8	2	2.25E+05	2.75E+05	MG/KG
ON	PCB	PCBs (total)	1336-36-3		Liquid Emulsion	3	2	4.90E-04	5.10E-02	MG/L
ON	PCB INORG	PCBs (total)	1336-36-3		Liquid Emulsion	8	5	2.55E-01	6.50E+01	MG/L
ON ON	INORG	Aluminum	7429-90-5		Liquid Emulsion Liquid Emulsion	2	1	7.00E-02 1.20E+00	7.00E-02 1.20E+00	MG/L MG/L
ON	INORG	Barium	7429-90-3		Liquid Emulsion	2	2	1.20E+00 1.00E-01	6.90E-01	MG/L
ON	INORG	Barium	7440-39-3		Liquid Emulsion	2	2	9.20E-02	6.80E-01	MG/L
ON	INORG	Chromium (total)	7440-47-3		Liquid Emulsion	2	2	2.80E-03	5.20E-03	MG/L
ON	INORG	Cobalt	7440-48-4	D	Liquid Emulsion	2	1	1.40E-03	1.40E-03	MG/L
ON	INORG	Cobalt	7440-48-4	Т	Liquid Emulsion	2	2	1.40E-03	2.40E-03	MG/L
ON	INORG	Copper	7440-50-8		Liquid Emulsion	2	1	9.00E-02	9.00E-02	MG/L
ON	INORG	Cyanide (amenable)	57-12-5A	T	Liquid Emulsion	2	1	2.30E-03	2.30E-03	MG/L
ON ON	INORG INORG	Iron Iron	7439-89-6		Liquid Emulsion Liquid Emulsion	2	2	2.80E+00 7.90E-02	2.29E+01 8.70E-02	MG/L MG/L
ON	INORG	Manganese	7439-96-5		Liquid Emulsion	2	1	2.90E+02	2.90E+00	MG/L
ON	INORG	Manganese	7439-96-5		Liquid Emulsion	2	2	1.50E-01	2.80E+00	MG/L
ON	INORG	Nickel	7440-02-0		Liquid Emulsion	2	1	5.40E-03	5.40E-03	MG/L
ON	INORG	Nickel	7440-02-0		Liquid Emulsion	2	2	5.80E-03	2.00E-02	MG/L
ON	INORG	Vanadium	7440-62-2	T	Liquid Emulsion	2	1	2.90E-03	2.90E-03	MG/L
ON	VOC VOC	1,3-Dichlorobenzene	541-73-1	T	Non-aqueous phase liquid	1	1	5.10E+00	5.10E+00	MG/KG
ON ON	VOC	1,4-Dichlorobenzene Methyl Acetate	106-46-7 79-20-9	T T	Non-aqueous phase liquid Non-aqueous phase liquid	1	1 1	6.60E+00 1.70E+00	6.60E+00 1.70E+00	MG/KG MG/KG
ON	VOC	Toluene	108-88-3		Non-aqueous phase liquid	1	1	2.50E-01	2.50E-01	MG/KG
ON	VOC	1,2,4-Trichlorobenzene	120-82-1	Т	Non-aqueous phase liquid	1	1	8.90E+00	8.90E+00	MG/KG
ON	SVOC	Acenaphthene	83-32-9	Т	Non-aqueous phase liquid	1	1	1.20E+02	1.20E+02	MG/KG
ON	SVOC	Biphenyl	92-52-4		Non-aqueous phase liquid	1	1	4.60E+01	4.60E+01	MG/KG
ON	PCB	PCBs (total)	1336-36-3		Non-aqueous phase liquid	2	2	2.50E+05	4.00E+05	MG/KG
ON	INORG	Cyanide (amenable)	57-12-5A		Non-aqueous phase liquid	1	1		1.80E-03	MG/KG
OFF OFF	VOC VOC	Acetone 2-Butanone	67-64-1 78-93-3	T T	Liquid Emulsion Liquid Emulsion	4	2	8.10E-01 3.10E-02	1.10E+00 1.10E+00	MG/L MG/L
OFF	VOC	Chlorobenzene	108-90-7	T	Liquid Emulsion	4	1	2.40E-04	2.40E-04	MG/L
OFF	VOC	Cumene	98-82-8		Liquid Emulsion	4	2	5.60E-04	3.80E-03	MG/L
OFF	VOC	Cyclohexane	110-82-7	Т	Liquid Emulsion	4	2	4.00E-04	2.30E-03	MG/L
OFF	VOC	1,3-Dichlorobenzene	541-73-1	Т	Liquid Emulsion	4	1	1.80E-04	1.80E-04	MG/L
OFF	VOC	1,4-Dichlorobenzene	106-46-7		Liquid Emulsion	4	2	4.70E-04	2.90E-03	MG/L
OFF	VOC	cis-1,2-Dichloroethene	156-59-2		Liquid Emulsion	4	1	3.50E-04	3.50E-04	MG/L
OFF OFF	VOC VOC	Ethyl Benzene Methylcyclohexane	100-41-4 108-87-2		Liquid Emulsion Liquid Emulsion	4	1	2.60E-03 1.20E-03	2.60E-03 9.00E-03	MG/L MG/L
OFF	VOC	Methylene Chloride	75-09-2		Liquid Emulsion	4	 1	5.60E-03	9.00E-03 5.60E-03	MG/L
OFF	VOC	Xylenes (total)	1330-20-7	T	Liquid Emulsion	4	1	1.70E-02	1.70E-02	MG/L
OFF	SVOC	bis(2-Ethylhexyl)phthalate	117-81-7	Ť	Liquid Emulsion	4	2	1.60E-01	1.10E+00	MG/L
OFF	SVOC	Di-n-octylphthalate	117-84-0		Liquid Emulsion	4	2	1.50E-01	8.30E-01	MG/L
OFF	SVOC	Phenanthrene	85-01-8		Liquid Emulsion	4	2	2.30E-02	8.30E-02	MG/L
OFF	PCB	PCBs (total)	1336-36-3		Liquid Emulsion	5	1	3.30E+04	3.30E+04	MG/KG
OFF	PCB	PCBs (total) PCBs (total)	1336-36-3 1336-36-3		Liquid Emulsion Liquid Emulsion	2	1	5.20E-03	5.20E-03	MG/L
OFF OFF	PCB INORG	Aluminum	7429-90-5		Liquid Emulsion	5 4	4	1.50E-04 1.70E-01	2.70E+00 9.30E+01	MG/L MG/L
OFF	INORG	Antimony	7429-90-5		Liquid Emulsion	4	<u> </u>	3.50E-01	3.50E+01	MG/L
OFF	INORG	Arsenic	7440-38-2		Liquid Emulsion	4	1	1.40E-01	1.40E-01	MG/L
OFF	INORG	Barium	7440-39-3		Liquid Emulsion	1	1	4.60E-02	4.60E-02	MG/L
OFF	INORG	Barium	7440-39-3	Т	Liquid Emulsion	4	4	3.60E-02	1.10E+00	MG/L
OFF	INORG	Beryllium	7440-41-7		Liquid Emulsion	4	1	2.20E-03	2.20E-03	MG/L
	INORG	Cadmium Chromium (total)	7440-43-9 7440-47-3		Liquid Emulsion Liquid Emulsion	4	2	4.40E-03 5.30E-03	1.50E-01 2.00E-01	MG/L
OFF OFF	INORG					1 1	2	6 30 ⊑ 03		MG/L

		GM P	owertrain Bed	iord Fa	cility, Bedford, Indiana		-			
On/Off- Site	Chem Group	Chemical	CASRN	Meas Basis	Matrix	Analyzed	Detected	Min Detected	Max Detected	Units
OFF	INORG	Copper	7440-50-8	Т	Liquid Emulsion	4	4	6.80E-03	1.12E+01	MG/L
OFF	INORG	Cyanide (total)	57-12-5	Т	Liquid Emulsion	4	1	6.10E-03	6.10E-03	MG/L
OFF	INORG	Iron	7439-89-6	Т	Liquid Emulsion	4	4	4.10E+00	1.23E+03	MG/L
OFF	INORG	Iron	7439-89-6	D	Liquid Emulsion	1	1	9.80E-02	9.80E-02	MG/L
OFF	INORG	Lead	7439-92-1	Т	Liquid Emulsion	4	2	3.30E-02	4.50E+00	MG/L
OFF	INORG	Manganese	7439-96-5	Т	Liquid Emulsion	4	4	1.50E-01	4.20E+00	MG/L
OFF	INORG	Manganese	7439-96-5	D	Liquid Emulsion	1	1	1.00E-01	1.00E-01	MG/L
OFF	INORG	Mercury	7439-97-6	Т	Liquid Emulsion	4	2	1.90E-04	7.70E-04	MG/L
OFF	INORG	Nickel	7440-02-0	D	Liquid Emulsion	1	1	3.60E-03	3.60E-03	MG/L
OFF	INORG	Nickel	7440-02-0	Т	Liquid Emulsion	4	4	5.00E-03	2.00E-01	MG/L
OFF	INORG	Thallium	7440-28-0	Т	Liquid Emulsion	4	1	5.20E-03	5.20E-03	MG/L
OFF	INORG	Vanadium	7440-62-2	Т	Liquid Emulsion	4	2	4.80E-03	1.90E-01	MG/L
OFF	INORG	Zinc	7440-66-6	Т	Liquid Emulsion	4	2	4.00E-01	4.82E+01	MG/L
OFF	VOC	Chlorobenzene	108-90-7	Т	Non-aqueous phase liquid	1	1	6.70E+00	6.70E+00	MG/KG
OFF	VOC	1,3-Dichlorobenzene	541-73-1	Т	Non-aqueous phase liquid	1	1	5.40E+00	5.40E+00	MG/KG
OFF	VOC	1,4-Dichlorobenzene	106-46-7	Т	Non-aqueous phase liquid	1	1	1.10E+01	1.10E+01	MG/KG
OFF	SVOC	Di-n-octylphthalate	117-84-0	Т	Non-aqueous phase liquid	1	1	1.20E+03	1.20E+03	MG/KG
OFF	PDIST	Diesel Range Organics	DRO	Т	Non-aqueous phase liquid	1	1	9.30E+05	9.30E+05	MG/KG
OFF	PCB	PCBs (total)	1336-36-3	Т	Non-aqueous phase liquid	1	1	2.00E+05	2.00E+05	MG/KG
	Notes:									
	Only const	ituents detected in the most recer	nt data in NAPL or	liquid en	nulsion are shown.					

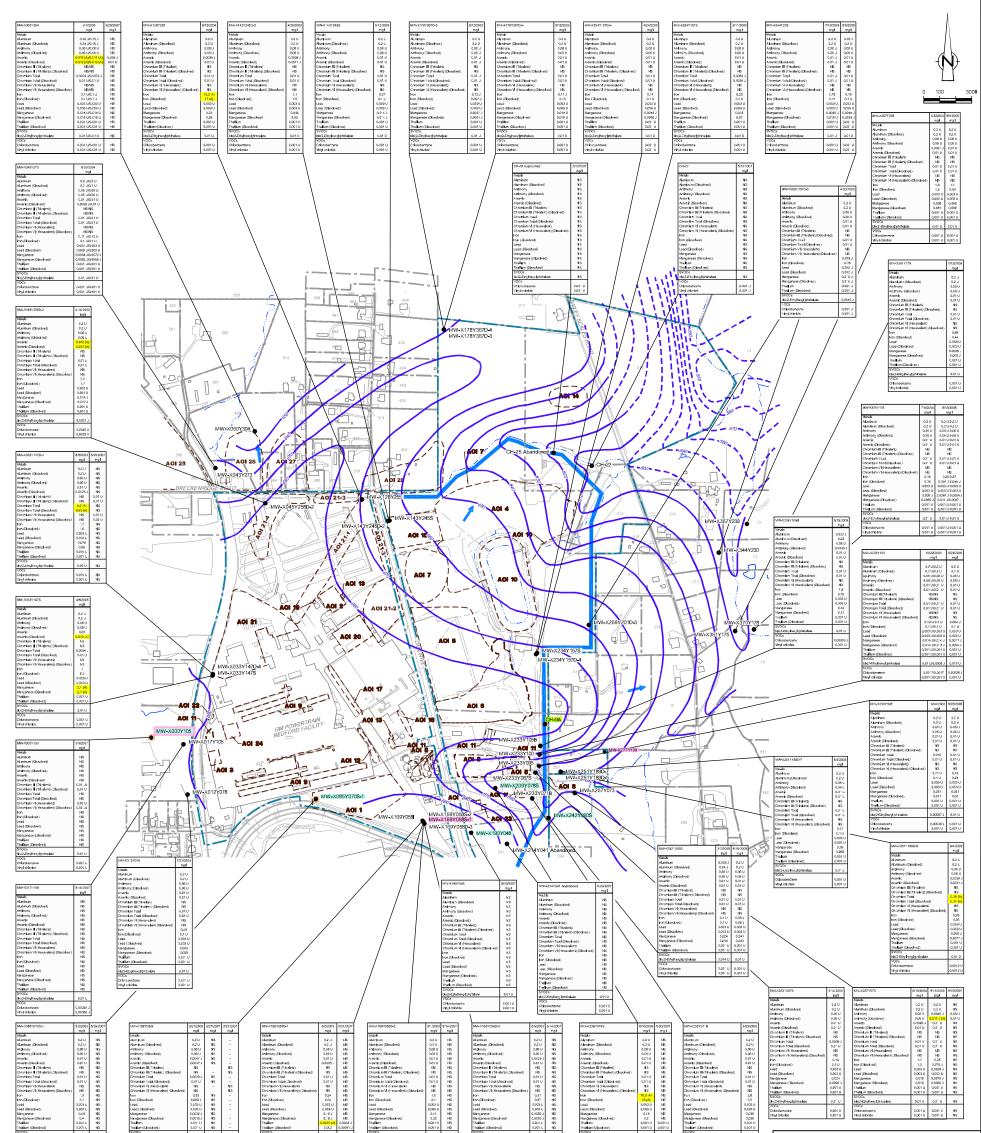

Table 2-6a: CA750 Groundwater and Surface Water Sampling Locations GM Powertrain Bedford Facility, Bedford, Indiana												
Location Name	Description	Sampling Parameter(s)	Monitoring Frequency	Reason								
CH-1B	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-2A	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-5	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-9A	Shallow Bedrock	VOC, SVOC, PCB	semi-annual	delineation of GW extent								
CH-42	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-42A	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-43	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
CH-44	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X000Y105	Shallow Bedrock	VOC, SVOC, PCB	semi-annual	delineation of GW extent								
MW-X012Y078	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X012Y100	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X033Y147S	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X043Y176	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X043Y186	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X047Y236	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X060Y304	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X085Y070S-1	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X085Y070S-2	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X169Y058S-1	Shallow Bedrock	PCB, Vinyl Chloride	semi-annual	delineation of GW extent								
MW-X10910383-1	Shallow Bedrock	PCB, Villyr Chiolide PCB	semi-annual	delineation of GW extent								
MW-X2091033 MW-X227Y049	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X2271049 MW-X227Y054	Shallow Bedrock	PCB		delineation of GW extent								
MW-X261Y356D-3		РСВ	semi-annual									
	Intermediate Bedrock	_	semi-annual	delineation of GW extent								
MW-X277Y100	Shallow Bedrock	VOC, SVOC, PCB	semi-annual	delineation of GW extent								
MW-X297Y305D-2	Intermediate Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X300Y199I-1	Intermediate Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X300Y199I-2	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X300Y199I-3	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X300Y199I-4	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X315Y115	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
MW-X315Y150	Shallow Bedrock	PCB	semi-annual	delineation of GW extent								
				monitor potential GW								
Tributary 3-3	Surface Water	PCB	semi-annual	discharges to surface water								
				monitor potential GW								
Western Tributary HW	Surface Water	PCB	semi-annual	discharges to surface water								
				monitor potential GW								
Northern Tributary 1	Surface Water	PCB	semi-annual	discharges to surface water								
Notes:												
1. If NAPL or a sheen is present at the												
	not been previously characterized, a											
2. Corehole CH-9A and wells MW-X00												
SVOC analysis in subsequent semi	-annual monitoring will be determine	d in consultation with EPA ba	sed on the results	from the initial samples.								
3. Tributary 3-3 will be included for mo												
and surface water is no longer being												
4. After the first year of monitoring, the	e monitoring locations and frequencie	es will be re-evaluated with US	SEPA to determin	e if modifications to the plan								
would be appropriate for the purpose				·								

4/29/2008

Location NameMeasurement ParameterFrequencyReasonCH-1BNAPL presencequarterlypresence of NAFCH-2ANAPL presencequarterlypresence of NAFCH-5NAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X029Y053NAPL presencequarterlypresence of NAFMW-X02Y109NAPL presencequarterlypresence of NAFMW-X02Y049NAPL presencequarterlypresence of NAFMW-X02Y053NAPL presencequarterlypresence of NAFMW-X02Y049NAPL presencequarterlygroundwater flow dirMW-X02Y054NAPL presencequarterlygroundwater flow dirMW-X02Y096groundwater elevationquarterlygroundwater flow dirMW-X02Y096groundwater elevationquarterlygroundwater flow dirMW-X19Y048groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flo		ertrain Bedford Facility, E	Monitoring	
CH-1BNAPL presencequarterlypresence of NAFCH-2ANAPL presencequarterlypresence of NAFCH-3ANAPL presencequarterlypresence of NAFCH-9ANAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X025Y070S-1NAPL presencequarterlypresence of NAFMW-X029Y053NAPL presencequarterlypresence of NAFMW-X222Y054NAPL presencequarterlypresence of NAFMW-X012Y100groundwater elevationquarterlypresence of NAFMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X192Y018groundwater elevationquarterlygroundwater flow dirMW-X233Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X238Y005groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundw	Location Name	Measurement Parameter	-	Reason
CH-2ANAPL presencequarterlypresence of NAFCH-5NAPL presencequarterlypresence of NAFCH-9ANAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-42ANAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X055Y070S-1NAPL presencequarterlypresence of NAFMW-X055Y070S-2NAPL presencequarterlypresence of NAFMW-X029Y053NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X012Y090groundwater elevationquarterlypresence of NAFMW-X012Y094NAPL presencequarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X19Y0048groundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X238Y005groundwater elevationquarterlygroundwater flow dirMW-X237Y038groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sg				
CH-5NAPL presencequarterlypresence of NAFCH-9ANAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-42ANAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X000Y105groundwater elevationquarterlypresence of NAFMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y096groundwater elevationquarterlygroundwater flow dir<			1 1	
CH-9ANAPL presencequarterlypresence of NAFCH-42NAPL presencequarterlypresence of NAFCH-42ANAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X012Y100groundwater elevationquarterlypresence of NAFMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X223Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X28Y05groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X28Y05groundwater elevationquarterlygroundwater flow dir<			1 1	
CH-42NAPL presencequarterlypresence of NAFCH-42ANAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X085Y070S-3NAPL presencequarterlypresence of NAFMW-X085Y070S-4NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X029Y053NAPL presencequarterlypresence of NAFMW-X022Y049NAPL presencequarterlypresence of NAFMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlyground				
CH-42ANAPL presencequarterlypresence of NAFCH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X227Y054NAPL presencequarterlypresence of NAFMW-X00Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X28Y005groundwater elevationquarterlygroundwater flow dirMW-X242Y038groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X28Y005groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater eleva				•
CH-43NAPL presencequarterlypresence of NAFCH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X00Y105groundwater elevationquarterlypresence of NAFMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X229Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X237Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005<				
CH-44NAPL presencequarterlypresence of NAFMW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X227Y054NAPL presencequarterlypresence of NAFMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y101groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y095groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X28Y005groundwater elevationquarterlygroundwater flow dirMW-X28Y005groundwater elevationquarterlygroundwater flow dirMW-X28Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X28Y005groundwater elevationquarterlygroundwater flow dirMW-				
MW-X012Y100NAPL presencequarterlypresence of NAFMW-X085Y070S-1NAPL presencequarterlypresence of NAFMW-X085Y070S-2NAPL presencequarterlypresence of NAFMW-X209Y053NAPL presencequarterlypresence of NAFMW-X227Y049NAPL presencequarterlypresence of NAFMW-X227Y054NAPL presencequarterlypresence of NAFMW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X012Y100groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y095groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X209Y0785groundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X2488Y005groundwater elevationquarterlygroundwater flow dirMW-X2488Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow		-		
MW-X085Y070S-1NAPL presencequarterlypresence of NARMW-X085Y070S-2NAPL presencequarterlypresence of NARMW-X209Y053NAPL presencequarterlypresence of NARMW-X227Y049NAPL presencequarterlypresence of NARMW-X227Y054NAPL presencequarterlypresence of NARMW-X000Y105groundwater elevationquarterlypresence of NARMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X203Y058groundwater elevationquarterlygroundwater flow dirMW-X203Y058groundwater elevationquarterlygroundwater flow dirMW-X203Y058groundwater elevationquarterlygroundwater flow dirMW-X203Y058groundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater				
MW-X085Y070S-2NAPL presencequarterlypresence of NARMW-X209Y053NAPL presencequarterlypresence of NARMW-X227Y049NAPL presencequarterlypresence of NARMW-X227Y054NAPL presencequarterlypresence of NARMW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterly <td></td> <td></td> <td></td> <td>presence of NAPL</td>				presence of NAPL
MW-X209Y053NAPL presencequarterlypresence of NARMW-X227Y049NAPL presencequarterlypresence of NARMW-X227Y054NAPL presencequarterlypresence of NARMW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationqua				
MW-X227Y049NAPL presencequarterlypresence of NAFMW-X227Y054NAPL presencequarterlypresence of NAFMW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288P005groundwater elevatio				
MW-X227Y054NAPL presencequarterlypresence of NARMW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundw				presence of NAPL
MW-X000Y105groundwater elevationquarterlygroundwater flow dirMW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X280Fgroundwater elevationquarterlygroundwater flow dirMW-X284Y06 <td< td=""><td></td><td></td><td></td><td></td></td<>				
MW-X012Y090groundwater elevationquarterlygroundwater flow dirMW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005 <td></td> <td></td> <td></td> <td>groundwater flow direction</td>				groundwater flow direction
MW-X012Y110groundwater elevationquarterlygroundwater flow dirMW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005 <td>MW-X012Y090</td> <td></td> <td>1 1</td> <td>groundwater flow direction</td>	MW-X012Y090		1 1	groundwater flow direction
MW-X022Y094groundwater elevationquarterlygroundwater flow dirMW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005 <td>MW-X012Y110</td> <td></td> <td>1 1</td> <td>groundwater flow direction</td>	MW-X012Y110		1 1	groundwater flow direction
MW-X022Y096groundwater elevationquarterlygroundwater flow dirMW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirMW-X288Y005 <td>MW-X022Y094</td> <td></td> <td></td> <td>groundwater flow direction</td>	MW-X022Y094			groundwater flow direction
MW-X190Y048groundwater elevationquarterlygroundwater flow dirMW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirotes: </td <td>MW-X022Y096</td> <td></td> <td>1 1</td> <td>groundwater flow direction</td>	MW-X022Y096		1 1	groundwater flow direction
MW-X192Y048groundwater elevationquarterlygroundwater flow dirMW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirotes: </td <td>MW-X190Y048</td> <td>v</td> <td>· · ·</td> <td>groundwater flow direction</td>	MW-X190Y048	v	· · ·	groundwater flow direction
MW-X209Y078Sgroundwater elevationquarterlygroundwater flow dirMW-X237Y058groundwater elevationquarterlygroundwater flow dirMW-X242Y060Sgroundwater elevationquarterlygroundwater flow dirMW-X272Y038groundwater elevationquarterlygroundwater flow dirMW-X288Y005groundwater elevationquarterlygroundwater flow dirotes:	MW-X192Y048	5		groundwater flow direction
MW-X237Y058 groundwater elevation quarterly groundwater flow dir MW-X242Y060S groundwater elevation quarterly groundwater flow dir MW-X272Y038 groundwater elevation quarterly groundwater flow dir MW-X288Y005 groundwater elevation quarterly groundwater flow dir otes:	MW-X209Y078S	v		groundwater flow direction
MW-X242Y060S groundwater elevation quarterly groundwater flow dir MW-X272Y038 groundwater elevation quarterly groundwater flow dir MW-X288Y005 groundwater elevation quarterly groundwater flow dir otes:	MW-X237Y058	3		groundwater flow direction
MW-X288Y005 groundwater elevation quarterly groundwater flow dir otes:	MW-X242Y060S	groundwater elevation		groundwater flow direction
MW-X288Y005 groundwater elevation quarterly groundwater flow dir otes:	MW-X272Y038	groundwater elevation	quarterly	groundwater flow direction
he well zone for all locations shown is shallow bedrock. APL or sheen have never been observed at MW-X085Y070S-1, CH-42, CH-42A, CH-43, or CH-44.	MW-X288Y005	groundwater elevation		groundwater flow direction
he well zone for all locations shown is shallow bedrock. APL or sheen have never been observed at MW-X085Y070S-1, CH-42, CH-42A, CH-43, or CH-44.				
APL or sheen have never been observed at MW-X085Y070S-1, CH-42, CH-42A, CH-43, or CH-44.				
				H-43, or CH-44.
NAPL is not present at a location, the groundwater elevation will be taken. Iter the first year of monitoring, the monitoring locations and frequencies will be re-evaluated with USEPA t				

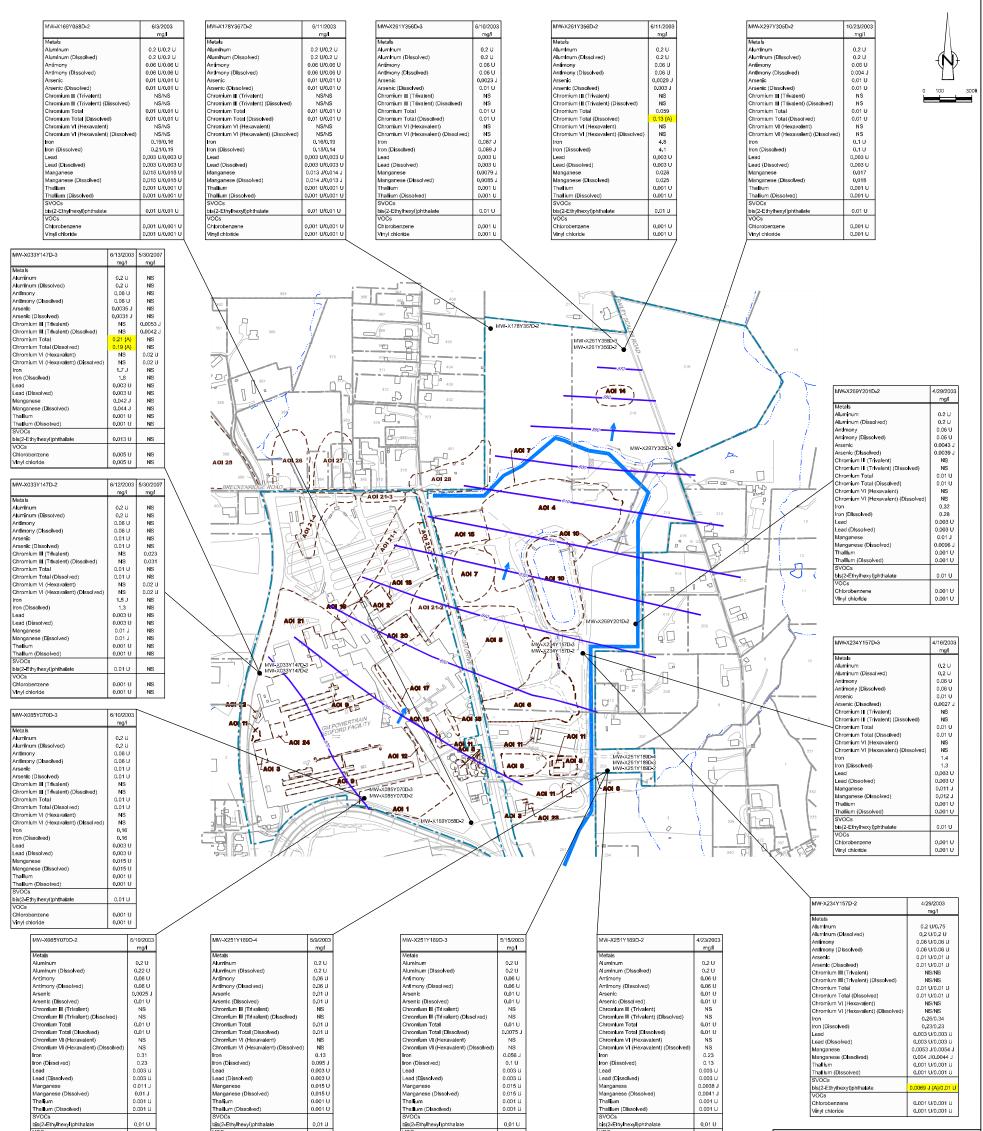
FIGURES

- Figure 1: Groundwater Sample Locations, Overburden Non-PCB Sample Results
- Figure 2: Groundwater Sample Locations, Shallow Bedrock Non-PCB Sample Results
- Figure 3: Groundwater Sample Locations, Intermediate Bedrock Non-PCB Sample Results
- Figure 4: Groundwater Sample Locations, Deep Bedrock Non-PCB Sample Results
- Figure 5: Groundwater Sample Locations, Overburden PCB Delineation and NAPL Results
- Figure 6: Groundwater Sample Locations, Shallow Bedrock PCB Delineation and NAPL Results
- Figure 7: Groundwater Sample Locations, Intermediate Bedrock PCB Delineation and NAPL Results
- Figure 8: Groundwater Sample Locations, Deep Bedrock PCB Delineation and NAPL Results

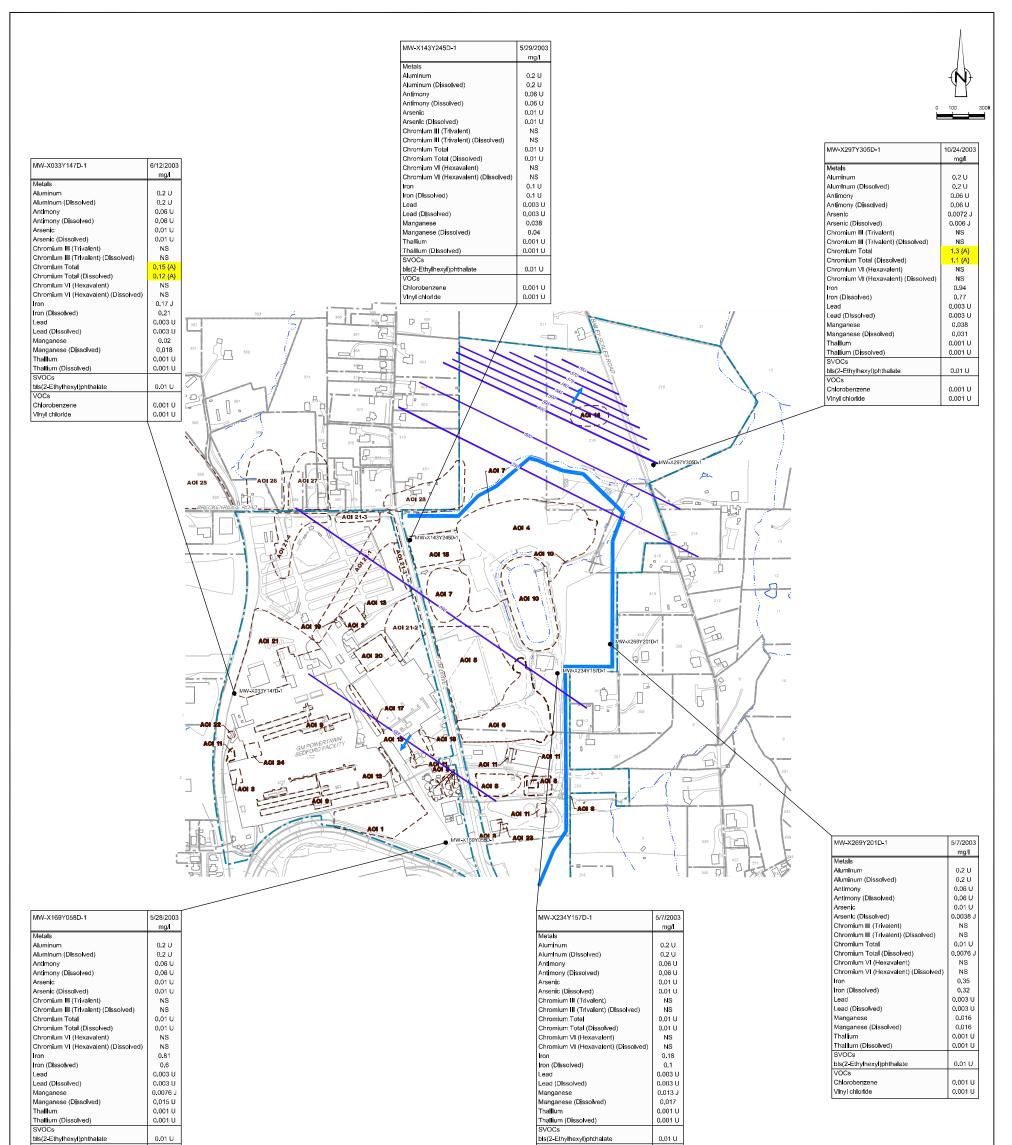

			Metals	
			Aluminum	37
AOI SUMMARY	AOI SUMMARY		Aluminum (Dissolved)	37
and the second	and the second se	SAMPLE LOCATION IDENTIFIER	Antimony	0.006
AOLD Description AOL1 Former Railroad Operations and Minerals Processing Facility	AOI ID Description AOI 22 Tool Room Annex Dock Release	TMW-X128Y255A 7/14/2004 DATE SAMPLE TAKEN	Antimony (Dissolved)	0.006
AOI 1 Former Rainbau Operations and Winerals Processing Facility AOI 2 Waste Storage Area	AOI 22 Tool Room Annex Dock Release AOI 23 Area Affected by the 1996 Wastewater Treatment Filter Cake Release	Groundwater - SAMPLE DESCRIPTION	Arsenic	0.01
AO 3 PCB Storage Areas	AOI 24 Area Affected by the June 2000 Die Lube 5150 Release		Arsenic (Dissolved)	0.01
AOI 4 Former North Disposal Area	AOI 25 Off Site Fill Area Parcel 398	Metals	Chromium III (Trivalent)	0.1
AOI 5 Former East Sand Disposal Area	AOI 26 Off-Site Fill Area Parcels 384 & 386		Chromium III (Trivalent) (Dissolved)	0.1
AO 6 Former Sludge Disposal and Fire Training Area	AOI 27 Off-Site Fill Area - Parcels 381 & 382	Aluminum (Dissolved) 0.2 U	Chromium Total	0.1
AOI 7 Former North Lagoon and Outfall 001 AOI 8 Former South Lagoons and Outfall 002	AOI 28 Off-Site Fill Area - Parcel 401 AOI 29 Off-Site Fill Area - Parcel 39		Chromium Total (Dissolved)	0.1
AOI 8 Former South Lagoons and Outfail UU2 AOI 9 Service Tunnels	AUI 29 Off-Site Fill Area - Parcel 39	CHEMICAL NAME	Chromium VI (Hexavalent)	0.1
AOI 10 Existing Stormwater Lagoon and Outfall 003			Chromium VI (Hexavalent) (Dissolved)	0.1
AOI 11 Aboveground Storage Tanks			Iran	11
AOI 12 Area Affected by the Reclaimed Hydraulic Fluid Release		2.2 (A) RESULT EXCEEDS THE DRINKING WATER CRITERIA	ron (Dissolved)	11
AOI 13 Underground Storage Tanks		4.7/47 PARENT SAMPLE VALUE/DUPLICATE SAMPLE VALUE	l ead	0.015
AOI 14 McBride Cows Disposal Area AOI 15 Former Equipment Storage Area		J THE ASSOCIATED VALUE IS AN ESTIMATED QUANTITY	Lead (Dissolved)	0.015
AOI 15 Former Equipment Storage Area AOI 17 Piston Building Oil Accumulations		U THE ANALYTE WAS ANALYZED FOR BUT WAS QUALIFIED	Manganese	0.88
AOI 18 Area Affected by the Henry System Discharge		NOT DETECTED ABOVE THE SAMPLE REPORT LIMIT	Manganese (Dissolved)	0.88
AOI 19 Area Affected by Paint and Thinner Spill		UL THE SAMPLE REPORT LIMIT VALUE IS AN ESTIMATE AND	Thallium	0.002
AOI 20 Northern Portion of the Piston Building		MAY BE INACCURATE OR IMPRECISE	Thalltum (Dissolved)	0.002
AOI 21 Filled Ravine North of Die Cast Building		NS NOT SAMPLED	SVOCs	0.000
AOI 21-1 Former Drainage Valley Under Hourly Parking Lot			bis(2-Ethylhexyl)phthalate	0.006
AOI 21-2 Former DraInage Valley Northeast of Piston and Office Buildings AOI 21-3 Surface Water Ditches Located Along GM Drive and Breckenridge Road		NOTES:	VOCs	0.000
AOI 214 Former Drainage Valley East of Electrical Sub-Station, Breckenridge Roa	d	1 GMPROPERTY BOUNDARY SURVEY BY BLEDSOE RIGGERT	Chlorobenzene	0.1
Nor 211 Tornar Brainage Varay East of Electrical day data (protecting) has		GURRETTAZ REGINED CONCERNED AND AND AND AND AND AND AND AND AND AN	Vinyl chloride	0.002
		BOUNDARY LOCATIONS APPROXIMATED FROM THE LAWRENCE COUNTY SURVEY PLATS, ADJOINING PROPERTY LINES MAY NOT	ring chicker	0.002
		ACCURATELY REPRESENT THE TRUE PROPERTY BOUNDARIES		
LEGEND ⊂ ⊂ Existing Buildings ● TM → → → FENCE LINE → → → RAILROAD TRACKS	W-X085Y070 GROUNDWATER SAMPLE LOCATION	GM POWERTRAIN BEDFORD FACILITY BEDFORD, INDIANA	CONESTOGA-ROVERS	ASSOCIATI
= = = DIRT RÓADS				
		Source Refer	nce	
DIRT ROADS ROADS / PAVED AREAS ROADS / PAVED AREAS APPROXIMATE SURFACE WATER LOCATION			NDE ASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT I AND CRA SURVEYS 2002 TO 2005	/ I. APR I L 2001.
ROADS / PAVED AREAS		EI CA750 GROUNDWATER SUMMARY	ASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT I AND CRA SURVEYS 2002 TO 2005	/ . APR L 2001.
ROADS / PAVED AREAS		EI CA750 GROUNDWATER SUMMARY	ASE MAP COMPLETED BY AIR-LAND SURVEYS, FUNT AND CRA SURVEYS 2002 TO 2005 er. Reviewed By. Date:	
ROADS / PAVED AREAS APPROXIMATE SURPACE WATER LOCATION APPROXIMATE GU RPOPERTY BOUNDARY APPROXIMATE PARCEL BOUNDARY		EI CA750 GROUNDWATER SUMMARY B GROUNDWATER SAMPLE LOCATIONS	ASE MAP COMPLETED BY AIR LAND SURVEYS, FLINT I AND CRA SURVEYS 2002 TO 2005	/ . APR L 2001. APR L 2008
ROADS / PAVED AREAS APPROXIMATE SURFACE WATER LOCATION APPROXIMATE GIM PROPERTY BOUNDARY APPROXIMATE PARCEL BOUNDARY AOI BOUNDARY	SCALE VERIFICATION	EI CA750 GROUNDWATER SUMMARY	ASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT AND CRA SURVEYS 2002 TO 2005 er: Reviewed By. Date: J.M. P.G.	APRIL 2008
ROADS / PAVED AREAS APPROXIMATE SURFACE WATER LOCATION APPROXIMATE GM PROPERTY BOUNDARY APPROXIMATE PARCEL BOUNDARY	SCALE VERIFICATION THIS BAR MEASURES 1° ON ORIGINAL, ADJUST SCALE ACCORDINGLY.	EI CA750 GROUNDWATER SUMMARY B GROUNDWATER SAMPLE LOCATIONS OVERBURDEN	ASE MAP COMPLETED BY AIR-LAND SURVEYS, FUNT AND CRA SURVEYS 2002 TO 2005 er. Reviewed By. Date:	APRIL 2008

13968-00(MEMO460)GN-WA025 APR 29/2008

Chemical Name

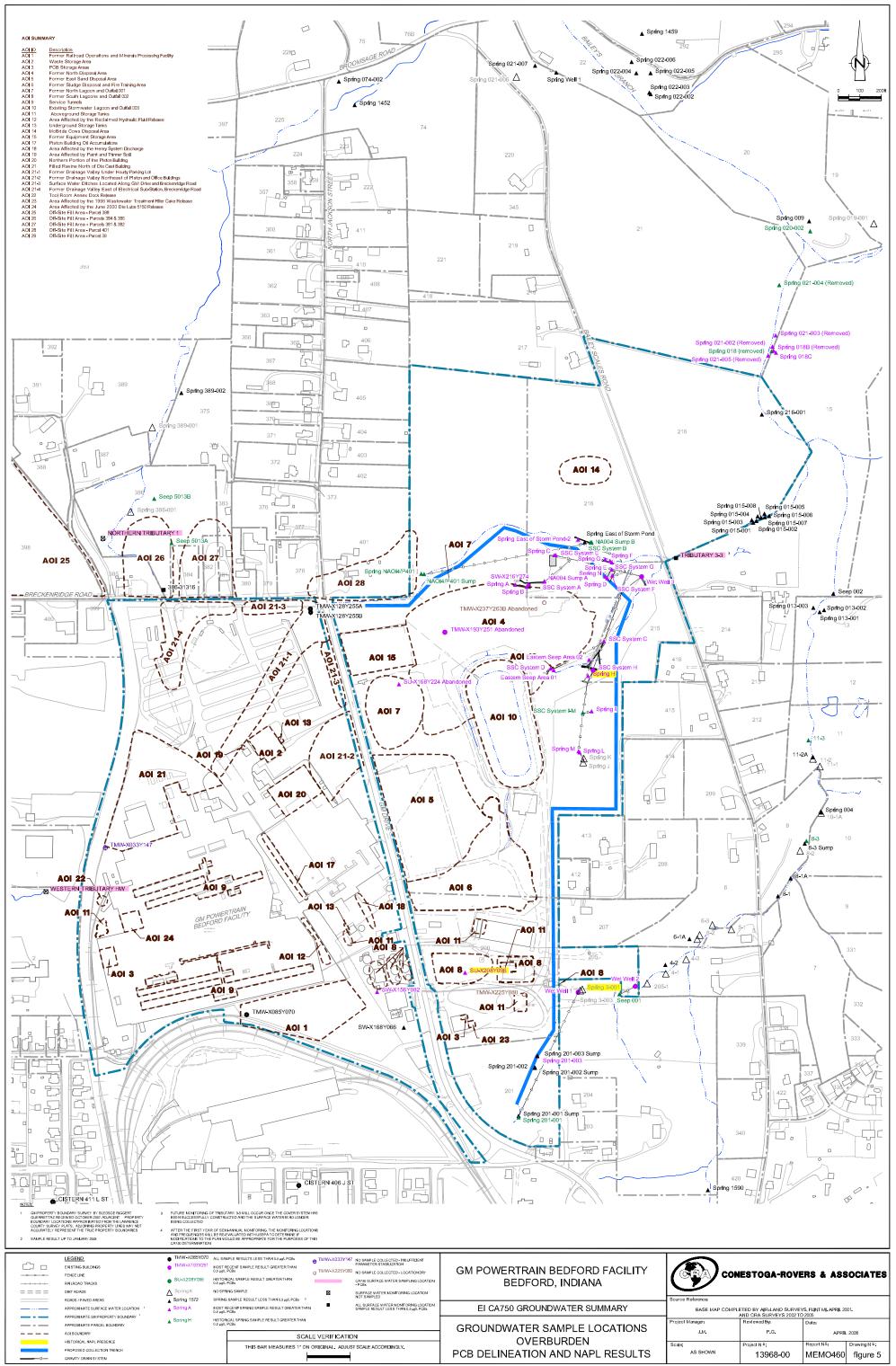

Drinking Water Criteria (mg/L) {A}

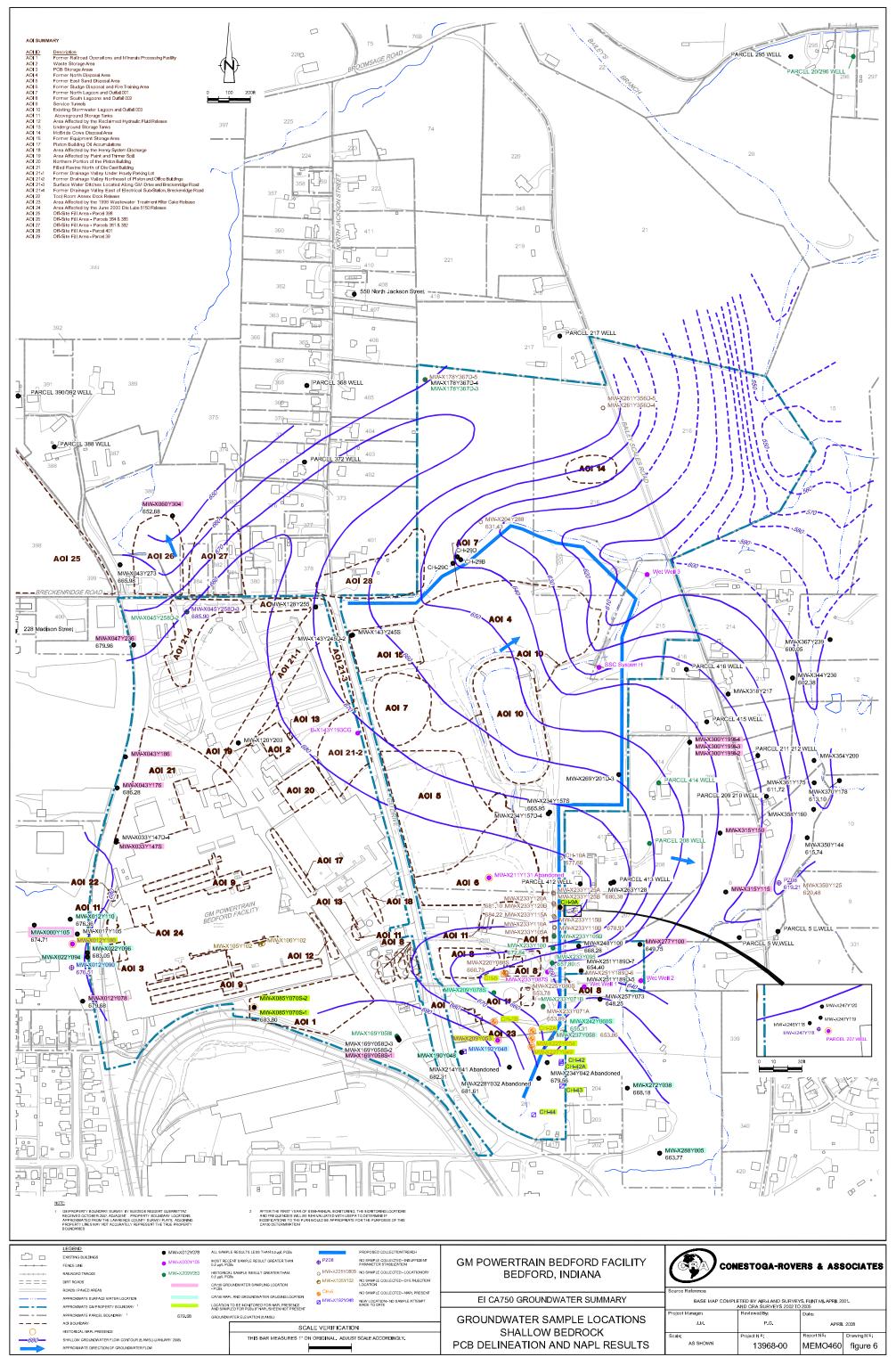
Chlorobenzene Vinyl chloride 0.001 U 0.001 U


Ms(2-Ethyfrexy(pothalate VCCs Chlorobenzene Vhgl chlotoe	0.01 U 0.01 U MG2 Ethylie VOCs 0.001 L 0.001 U Chlorosens 0.001 L 0.001 U Vest chlorid	ne 0.00° U I	NS	bis(2-Eithy fixe)d (phthalate VCICs Chlandercene Vitgl chloride	0.01 U NS 0.001 U NS 0.0094 (A) 0.0019	bis(2.Enythesyllipholate VOCa Chilorobercane Vitral chickle	0.01 U NS 0.001 U NS 0.001 U 0.001 U	als(2 Ethyfrexyljonthalate VOCu Chlorobenzene Viral chlorice	0.01U NS 0.001L NS 0.001L 0.001U	bis(2 Ethylnexyliphthala:e VDCs Chlorobenzene Vhylichtotda	0.01U 0.001U 0.001U	NS NS 0.001 U	bis(2-Ethylipholyipholaise VOCs Chilorobercene Vinyl chiloride	0.01U 0.001U 0.001U	[Chemical Name		king Wa eria (m {A}
AOI SUMMARY			AOI SU	JMMARY Description											77777	Vetals Aluminum Aluminum (Dissolved) Antimony		37 37 0.006
ACI 1 Former ACI 2 Waste ACI 3 PCB Si ACI 4 Former ACI 5 Former ACI 6 Former ACI 7 Former ACI 7 Former ACI 7 Former ACI 8 Former ACI 9 Service ACI 10 Existin ACI 11 Above ACI 12 Area A ACI 13 Area A ACI 14 McBrid ACI 15 Former ACI 16 Area A ACI 17 Area A ACI 18 Area A ACI 21 Filter ACI 21 Filter ACI 22 Former ACI 22 Former ACI 24 Former ACI 24 Former ACI 24	Part Rainoad Operations and Minerals P Storage Area Khorage Area Khorage Area Fast Sand Disposal Area Fast Sand Disposal Area Fast Sand Disposal Area Fast Sand Disposal Area Founds and Catal Other Lagoons and Outfall OU Found Storage Tarks offected by the Reclaimed Hydraulic P proceed Storage Tarks Miceted by the International Hydraulic P Catalong Ol Korage Area Example Area Miceted by the Herny System Discharg Miceted by the Herny System Discharg Miceted by the Herny System Discharg Miceted by Tark and Threer Skill mm Portion of the Piston Building there are the Herny System Discharg Paranege Valley Northeast of Piston e Water Ditchas Located Arong GM r Drainage Valley East of Electrical-	e luid Release e ag Lot Drive and Breckenidge Road	A01 22 A01 23 A01 24 A01 25 A01 25 A01 25 A01 27 A01 27 A01 23	Tool Room Annex D Area Affected by the Area Affected by the Off-Site Fill Area - F Off-Site Fill Area - F Off-Site Fill Area - P	: 1996 Wastewater T : June 2000 Die Lube arcel 398 arcels 384 & 385 arcels 384 & 382 arcels 381 & 382 arcel 401	frealmant Filler Cake Rales 5/150 Release	358	1	W-X2011/173 Verkt Uwrinze Marinen Uurinen Uurinen Uurinen Uurinen Okadwed	7/13/2004 DATE SAPLI m01 RESULT UNT 0.2 U CONCENTRAT 0.2 U CONCENTRAT 0.0 U CHEMICAL IN 0.2 (A) RESULT EXCL 0.3 THE SSOLD NOT DETECT NOT EST MOTES: 1 GUERNETTA: 0.0 UR ROPERT GUERNETTA: 0.0 UR ROPERT COUNT'S KL 0.0 UR ROPERT COUNT'S KL	ITEN ANE EEDES THE DRINI HE VALUE DUP TED VALUE IS A WAS ANNLYZE DATIONS APPI V BOLINDARY SI RECEIVED OCT DATIONS APPI VERTER LAND	KING WATER C LICATE SAMPL NESTIMATED D FOR, BUT W SAMPLE REPO SAMPLE REPO TOBER 2007, AT ROXIMATED F1 UDNING REPO HE TRUE PROP	e value Quanitty As Qualified RT LIMT			Antimory (Dissolved) Arsenic Disorbiell (Trivalent) Disorbiell (Trivalent) Disorbiell (Trivalent) Disorbiell (Trivalent) Disorbiell (Dissolved) Disorbiell (Dissolved) Disorbiell (Dissolved) Continum VI (Hexavalent) Disorbiell Anganese Anganese (Dissolved) Anganese (Dissolved) Trailium Dissolved) Stock Zhiorobenzane (nyl coloide		0.006 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
	EGEND ISTING BUILDINGS NCE LINE LIRDAD TRACKS IT ROADS ADS / PARED AREAS	♦ MW-X361Y175	GROUNDWATE CA750 GROUN NON-PCB PAR CA750 NAPL A LOCATION TO	ND GROUNDWATER GAUGING LO BE MONTORED FOR NAPL PRES D FOR NON+P CB PARAMETER(S) F	INCE			GM	BE	TRAIN BED DFORD, IN	DIAN	Ą		Source Re	lerence:	DNESTOGA-ROV		
AP	PROXIMATE SURFACE WATER LOCATION PROXIMATE GM PROPERTY BOUNDARY ¹ PROXIMATE PARCEL BOUNDARY ¹ LOOW DARY		-					GR						Project Ma		APLETED BY AIR-LAND SURVE AND CRA SURVEYS 2002 1 Reviewed By: P.G.	0 2005 Date:	
О ніз 	I BOUNDARY ITORICAL NAPL PRESENCE ALLOW GROUNDWATER FLOW CONTOUR (ILA PROXIMATE DIRECTION OF GROUNDWATER F		-	THIS BAR MEASU	SCALE VER	IFICATION AL. ADJUST SCALE ACC	CORDINGLY.		SHA	ALLOW BEI	DROC	K		Scale:	AS SHOWN	Project N [®] : 13968-00	Report Nº: MEMO46	RIL 2008 Drav 0 fi

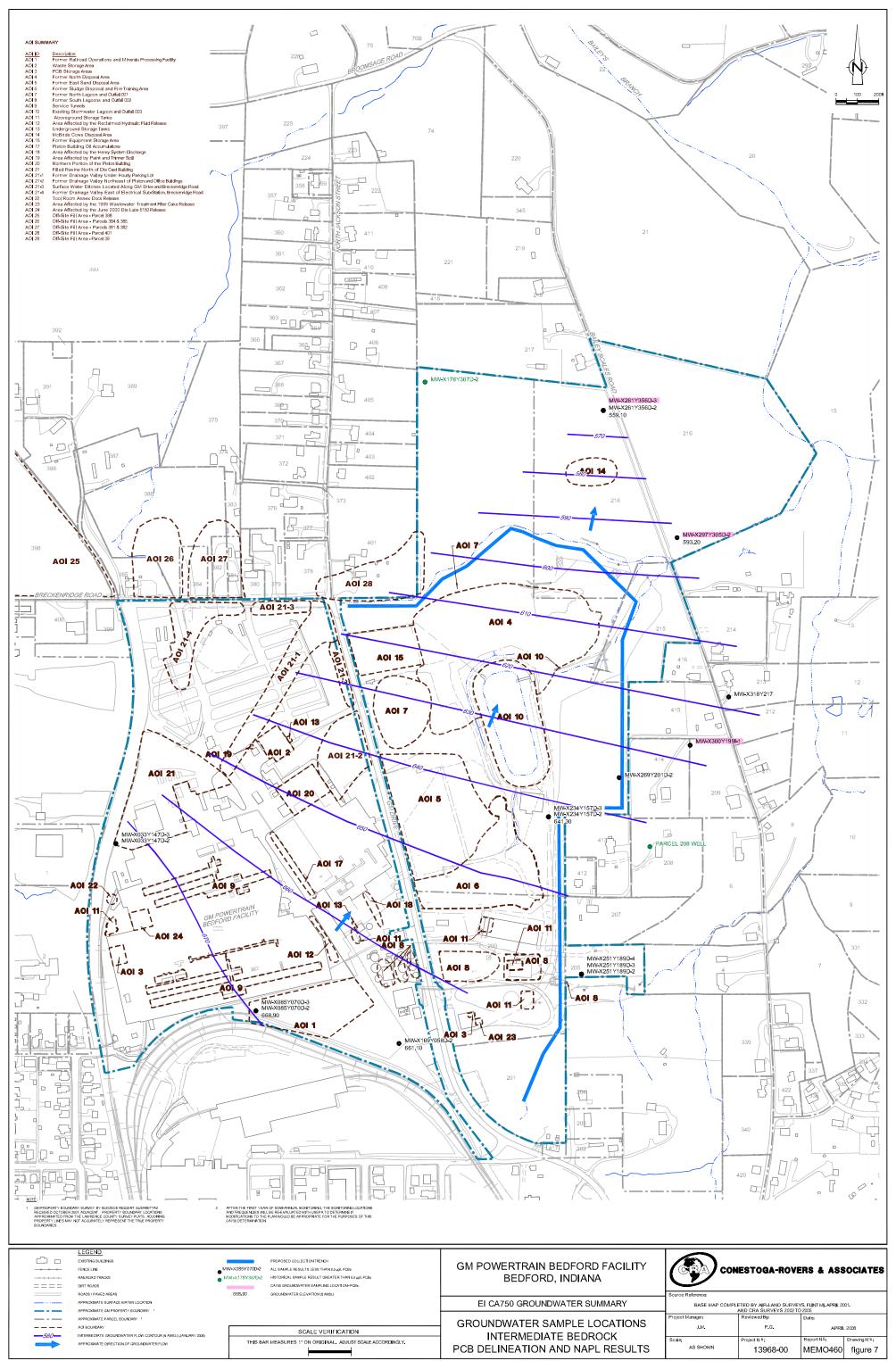
13968-00(MEMO460)GN-WA018 APR 29/2008

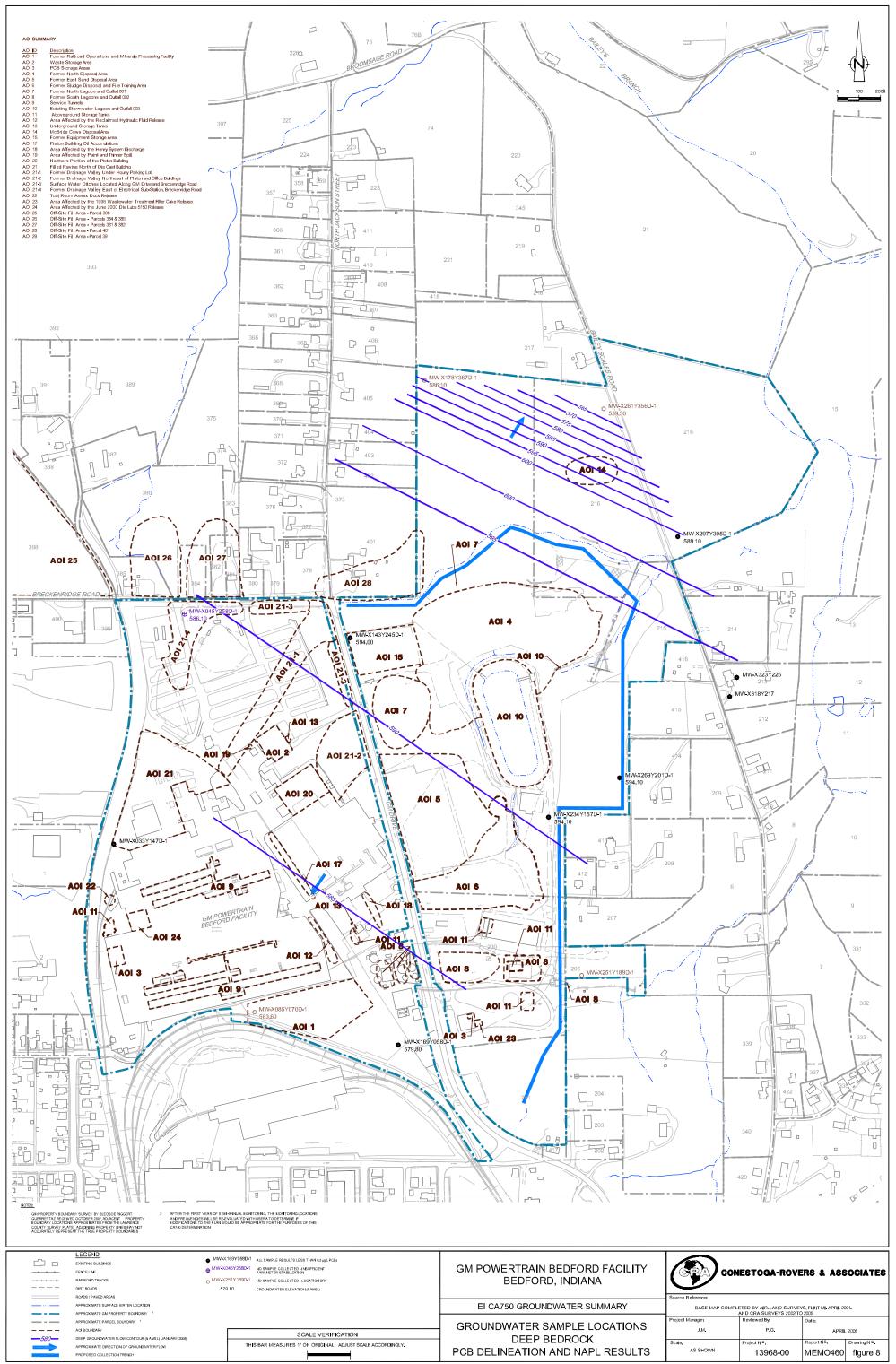
Chlorobenzene Vinyl chloride	0.001 U 0.001 U		robenzene I chloride	0.001 U 0.001 U	Chlorobenzene Vinyl chloride	0.001 U 0.001 U	Chlorobenzene Vinyl chloride	0.001 U 0.001 U	Chemical Name	Drinking Water Criteria (mg/L) {A}
QI 2 Waste Storm QI 3 POBE Storag QI 4 Former Nord QI 5 Former Sas QI 6 Former Sas QI 7 Former Sas QI 8 Former Sas QI 9 Service Tun QI 10 Existing Stor QI 11 Abovegrou QI 12 Area Affect QI 15 Former Equ QI 16 Former Equ QI 17 Piston Build QI 18 Area Affect QI 19 Area Affect QI 19 Area Affect QI 21 Former Dat QI 21 Sormer Dat	road Operations and Minerals Proc age Area ye Areas th Disposal Area it Sand Disposal Area dge Disposal and Filme Training Area dge Disposal and Pilme Training Area th Lagoons and Outfall 001 th Lagoons and Outfall 002	of d Office Buildings d Office Rouldings		e 1995 Wastewater /Tradmer Filler Cakel e June 2000 Die Netwase Aracit 396 Parocita 391 & 395 Parocita 391 & 392 Parocita 391 & 392 Parocita 391 Varcel 491 Cause Martin Za Cause Martin Cause Martin	Ourdonny glavney by biledoof Ridgert Corved October 2007, Aductor - Property Plants, Aduchikus Property I unes ann yad Plants, Aduchikus Property Buddandes	Media Aluminam Aluminam (Dataked) Antikery Antikery (Dataked) 0.03 (Å 0.20 0.13 (Å 0.20 1 0.13 (Å 0.20 1 0.13 (Å 0.20 1 0.20 1 0.20 1 1 0.20 1 1 0.20 1 0.20 1 0.20 1 0.20 1 0.00 1 0 0 0 1 0 0 0 0	CONCENTRATION CHEMICAL NAME RESULT EXCEEDS THE DRINKING WATER CR	VALLE LANTITY LINT SOS BNOCKET LINT SOS BNOCKET AGENT PROPERTY AGENT PROPERTY SOLADARE STY SOLADARE SOLADARE SOLADARE	Metals Aluminum Aluminum Aluminum Antimory Antimory Antimory Antimory Antimory Antimory Antimory Antimory Antimory Arsenic Arsenic Chronium III (Trivalent) Chronium Total (Disaclved) Chronium Total (Disaclved) Chronium Total (Disaclved) Chronium Total (Disaclved) Lead Lead (Disaclved) Manganese Manganese Manganese Manganese Dis(2-Ethylnexyl;phthelate VOCS Dis(2-Ethylnexyl;phthelate VOCS Chlorobenzene Vinyl chloride	(A) 37 37 0.006 0.006 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.
	LEGEND EXISTING BUILDINGS FENCE LINE RAULROAD TRACKS DIRT ROADS ROADS / PAVED AREAS APPROXIMATE SURFACE WATER LOCATI			VERD COLLECTION TRENDH		BEDFC	IN BEDFORD FACI DRD, INDIANA UNDWATER SUMMARY	Source Reference	E MAP COMPLETED BY AIR-LAND SURVEYS	FLINT MI-APRIL 2001.
-580-	APPROXIMATE GM PROPERTY BOUNDAR APPROXIMATE PARCEL BOUNDARY ' ACI BOUNDARY INTERMEDIATE GROUNDWATER FLOW C APPROXIMATE DIRECTION OF GROUNDWATER	ONTOUR (8 AMSL) (JANJARY 2008)	THIS BAR MEAS	SCALE VERIFICATION	E ACCORDINGLY.	INTERME	R SAMPLE LOCATI DIATE BEDROCK SAMPLE RESULTS	ONS Project Manager: J.M Scale: AS SH4	K.V. Project N. ^g	august 2007 AUGUST 2007 Report №: Drawing N MEMO460 figur


13968-00(MEMO460)GN-WA022 APR 29/2008


√Inyl chl	oride 0.001 U				Vinyl chloride		0.001 U	Chemical Name	Drinking Wate Criteria (mg/l {A}
								Metals	
								Aluminum	37
O SUMM	IARY	AO SUMI	IARY					Aluminum (Dissolved)	37
								Antimony	0.006
O D	Description	AOI ID	Description			- SAMPLE LOCATION	IDENTIFIER	Antimony (Dissolved)	0.006
01	Former Railroad Operations and Minerals Processing Facility	AOI 22	Tool Room Annex Dock Release		4	7		Arsenic	0.01
0 2	Waste Storage Area	AOI 23	Area Affected by the 1996 Wastewater Treatment Filter Cake Release	MW-X269		DATE SAMPLE TAKE	EN	Arsenic (Dissolved)	0.01
0 3 0 4	PCB Storage Areas Former North Discosal Area	AOI 24 AOI 25	Area Affected by the June 2000 Die Lube 5150 Release Off-Site Fill Area - Parcel 398		mg/l –	RESULT UNIT		Chromium III (Trivalent)	0.1
014	Former North Disposal Area	AOI 25 AOI 26	Off-Site Fill Area - Parcel 384 & 385	Metals				Chromium III (Trivalent) (Dissolved)	0.1
016	Former East Sand Disposal Area	AOI 20 AOI 27	Off-Site Fill Area - Parcels 381 & 382	Aluminum	0.2 U -	CONCENTRATION		, ,, ,,	
017	Former North Lagoon and Outfall 001	AOI 28	Off-Site Fill Area - Parcel 401	Aluminum	(Dissolved) 0.2 U			Chromium Total Chromium Total (Dissolved)	0.1
018	Former South Lagoons and Outfall 002	AOI 29	Off-Site Fill Area - Parcel 39			CHEMICAL NAME			0.1
0 9	Service Tunnels					one more reme		Chromium VI (Hexavalent)	0.1
OI 10	Existing Stormwater Lagoon and Outfal 003							Chromium VI (Hexavalent) (Dissolved)	0.1
OI 11	Aboveground Storage Tanks							ran	11
OI 12	Area Affected by the Reclaimed Hydraulic Fluid Release				1.1 (A)	RESULT EXCEEDS	THE DRINKING WATER CRITERIA	ron (Dissolved)	11
OI 13	Underground Storage Tanks				1	THE ASSOCIATED V	ALUE IS AN ESTIMATED QUANTITY	Lead	0.015
0 14	McBride Cows Disposal Area					THE ANALYTE WAS	ANALYZED FOR. BUT WAS QUALIFIED	Lead (Dissolved)	0.015
OI 15	Former Equipment Storage Area Piston Building Oil Accumulations						OVE THE SAMPLE REPORT LIMIT	Manganese	0.88
OI 18	Area Affected by the Henry System Discharge				NS	NOT SAMPLED		Manganese (Dissolved)	0.88
0 19	Area Affected by Paint and Thinner Spil							Thallium	0.002
0 20	Northern Portion of the Piston Building							Thallum (Dissolved)	0.002
0 21	Filled Ravine North of Die Cast Building								0.002
0 21-1	Former Drainage Valley Under Hourly Parking Lot							SVOCs	
0 21-2	Former Drainage Valley Northeast of Piston and Office Buildings				1	NOTES:		bis(2 Ethylnexyl)phthalate	0.006
OI 21-3	Surface Water Ditches Located Along GM Drive and Breckenridge Road				1	1 GMPROPERTY BOU	INDARY SURVEY BY BLEDSOE RIGGERT	VOCs	
0 21-4	Former Drainage Valley East of Electrical Sub-Station, Breckenridge Road					GUERRETTAZ RECE	EVED OCTOBER 2007. ADJACENT PROPERTY ONS APPROXIMATED FROM THE LAWRENCE	Chlorobenzene	0.1
						COUNTY SURVEY PI	UNS APPROXIMATED FROM THE LAWRENCE LATS. ADJOINING PROPERTY LINES MAY NOT	Vinyl chloride	0.002

LEGEND EXSTING BUILDNSS FENCE LINE RAILBOAD TRACKS DIRT ROADS	MW-X269Y201D-1 GROLINDWATER SAMPLE LOCATION	GM POWERTRAIN BEDFORD FACILITY BEDFORD, INDIANA	CON	IESTOGA-ROVE	ers & Ass	OCIATES
 ROADS / PAVED AREAS APPROXIMATE SURFACE WATER LOCATION APPROXIMATE GM PROPERTY BOUNDARY		EI CA750 GROUNDWATER SUMMARY		ETED BY AIR-LAND SURVEY		xo1 .
 APPROXIMATE PARCEL BOUNDARY 1 ACI BOUNDARY	SCALE VERIFICATION	GROUNDWATER SAMPLE LOCATIONS	Project Manager J.M.	Reviewed By: K.V.	Date: AUGUS	\$T 2007
 DEEP GROUNDWATER FLOW CONTOUR (IE ANSLI, (JANUARY 2008) APPROXIMMTE DRECTION OF GROUNDWATER FLOW PROPOSED COLLECTION TRENCH		DEEP BEDROCK NON-PCB SAMPLE RESULTS	Scale: AS SHOWN	Project N ^a : 13968-00	Report Nº: MEMO460	^{Drawing №} : figure 4


13968-00(MEMO460)GN-WA023 APR 29/2008


13968-00(MEMO460)GN-WA019 APR 29/2008

13968-00(MEMÓ460)GN-WA020 APR 29/2008

3968-00(MEMO460)GN-WA021 APR 29/2008

3968-00(MEMO460)GN-WA024 APR 29/2008