RCRA FACILITY INVESTIGATION

QUARTERLY PROGRESS REPORT #12 FIRST QUARTER 2004

GM POWERTRAIN – BEDFORD PLANT 105 GM DRIVE BEDFORD, INDIANA

EPA ID# IND006036099

Prepared For: General Motors Corporation

APRIL 2004 REF. NO. 13968 (87) This report is printed on recycled paper.

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODUCTION	.1
2.0	LIST OF COMPLETED ACTIVITIES	2
3.0	SUMMARIES OF ALL CHANGES MADE IN THE RFI DURING THE REPORTING PERIOD	.5
4.0	COMMUNITY RELATIONS	6
5.0	CHANGES IN PERSONNEL DURING THE REPORTING PERIOD	.7
6.0	PROJECTED WORK FOR THE NEXT REPORTING PERIOD	8
7.0	COPIES OF DAILY REPORTS, INSPECTION REPORTS, LABORATORY/MONITORING DATA	9

LIST OF FIGURES (Following Text)

FIGURE 1 RFI INVESTIGATION – ADDITIONAL INVESTIGATION AOIs 18 and 22

LIST OF TABLES (Following Text)

TABLE 1ANALYTICAL RESULTS SUMMARY - NOVEMBER 2003

LIST OF APPENDICES

APPENDIX A BOREHOLE LOGS

QUARTERLY PROGRESS REPORT DISTRIBUTION LIST

U.S. EPA - Waste, Pesticide and Toxins Division, Project Manager	Peter Ramanauskas (2 copies)
U.S. EPA – Emergency Response Branch, On-Scene Coordinator	Brad Stimple
U.S. EPA – Emergency Response Branch, On-Scene Coordinator	Ken Rhame
Tetra Tech EM Inc., U.S. EPA Consultant	Stacy Delareintrie
Earth Tech, U.S. EPA Consultant	John Bassett
Indiana Department of Environmental Management	John Gunter (5 copies)
Indiana State Health Department	LaNetta Alexander
Indiana Sate Health Department	Barbara Gibson
U.S. Fish and Wildlife Service	Dan Sparks
U.S. Fish and Wildlife Service	Lori Pruitt
GM WFG Remediation	Ed Peterson
GM WFG Remediation	Cheryl Hiatt
CRA Project Coordinator	James McGuigan
Exponent	Rick Bodishbaugh
ENVIRON	C.Y. Jeng

1.0 INTRODUCTION

This Quarterly Progress Report is submitted in accordance with the Bedford Performance-Based Corrective Action Agreement (Agreement) between the United States Environmental Protection Agency (U.S. EPA) and General Motors Corporation (GM), executed on March 20, 2001, and modified on October 1, 2002. This report covers the period of the fourth calendar quarter of 2003 for the GM-Powertrain – Bedford Plant (Facility), Bedford, Indiana. Some of the activities conducted as part of the overall RCRA Corrective Action work are being addressed under the CERCLA Removal Action Program, pursuant to the Administrative Order on Consent (AOC) between the U.S. EPA and GM (effective July 31, 2003). These activities are described in more detail within the CERCLA Monthly Progress Reports referred to herein.

The next quarterly progress report, covering the Second Quarter 2004, will be submitted on or before July 15, 2004.

2.0 <u>LIST OF COMPLETED ACTIVITIES</u>

The following documents were prepared and distributed during this quarter:

- a Project Technical Review Presentation was held with U.S. EPA, United States Fish and Wildlife Service (USFWS), and the Indiana Department of Environmental Management (IDEM) on January 7 and 8, 2004;
- a December 2003 Removal Action Monthly Progress Report was submitted to U.S. EPA, USFWS, IDEM, the United States Army Corps of Engineers (ACOE), and the Indiana State Department of Health (ISDH) on January 15, 2004;
- meetings were held with owners of property on and adjacent to the creek and with the general community on January 27 and 28, 2004, respectively. These meetings provided updates on the Corrective Action activities;
- a RCRA Corrective Action Review Real Estate Meeting was held on February 5, 2004, in Bedford, Indiana;
- the 11th Community Liaison Panel (CLP) meeting was held on February 6, 2004;
- a Geologic/Hydrogeologic Presentation was held with U.S. EPA and IDEM on February 12, 2004;
- a January 2004 Removal Action Monthly Progress Report was submitted to U.S. EPA, USFWS, IDEM, ACOE, and ISDH on February 15, 2004;
- the Habitat Biological Assessment was submitted to USFWS, U.S. EPA and IDEM February 17, 2004;
- the RFI Work Plan: Addendum No. 5 was submitted to the U.S. EPA and IDEM on February 18, 2004;
- the Site Source Control Work Plan: Addendum No. 1 was submitted to the U.S. EPA and IDEM February 18, 2004;
- the Sycamore Ridge Landfill Soil and Waste Removal Construction Report was submitted to the U.S. EPA and IDEM on February 20, 2004;
- responses to U.S. EPA's comments on RFI Addendum Nos. 3 and 4 were submitted on February 23, 2004;
- the final RFI Work Plan Addendum No. 4 regarding the test pit investigations was submitted to U.S. EPA, USFWS, and ISDH on March 3, 2004;
- a draft Biological Assessment was submitted in two parts, habitat impacts of remediation and residual PCB risk calculation, in early March. A meeting was held at the site on March 10 with U.S. EPA, USFWS, and IDEM to discuss the draft

Biological Assessment findings and receive comments. Based on comments received to date, the Biological Assessment is expected to be finalized in May 2004. USFWS has approved the cutting of trees in the Biological Assessment study area, downstream of Parcel 22 to the Peerless Road Bridge, prior to April 15;

- the scope of the Site-wide Ecological Risk Assessment was discussed at the March 10 meeting, and limited comments from U.S. EPA, USFWS, and IDEM were received. Based on this interaction, a draft ERA Problem Formulation is being developed and will be submitted in May, 2004;
- a site tour and presentation was given to U.S. EPA on March 11, 2004;
- a February 2004 Removal Action Monthly Progress Report was submitted to U.S. EPA, USFWS, IDEM, and ISDH on March 15, 2004;
- an aerial thermal imaging survey was conducted during the night of March 21, 2004, of the creek systems and surrounding areas. This thermal imagery will aid in identifying possible previously unidentified spring or seep locations. The information gathered will be used as part of the implementation of RCRA Facility Investigation: Addendum No. 5, once approval is received from the U.S. EPA;
- approval of the RCRA Facility Investigation Work Plan: Addendum No. 3 was received March 22, 2004, from U.S. EPA. The investigative work on the hourly parking lot began on March 30, 2004, and will continue in April 2004;
- the Site Source Control Work Plan: Addendum No. 1 was submitted on February 18, 2004, to the U.S. EPA and IDEM for review and approval. Comments were received from U.S. EPA and IDEM. The cast-in place concrete foundation components of the collection system have been installed in trench 1 located on Parcel 3 and in trench 3 located on Parcel 205;
- additional comments were received from the U.S. EPA on the RFI Work Plan Addendum No. 4. A response to these comments will be submitted in early April 2004;
- the RFI Work Plan: Addendum No. 5 was submitted on February 18, 2004, to the U.S. EPA and IDEM. Comments were received from the U.S. EPA and IDEM. Responses to these comments are currently being drafted and are expected to be submitted in May 2004;
- tree clearing has been completed in the Downstream section approved by USFWS;
- bi-weekly conference calls were held with the U.S. EPA, USFWS, IDEM, and ISDH on March 2, 16, and 30, 2004, to discuss project progress;

- on-Site investigation activities from the RFI Work Plan continued during this reporting period; and
- groundwater sampling activities were conducted during this quarter at several of the monitoring wells installed late last year. However, groundwater samples could not be collected due to insufficient volume and non-stable field parameters. Single well response (slug) tests are also being conducted at each of these new monitoring wells.

GM also continued to evaluate specific sampling requests made by residents in this quarter and collected samples, where appropriate, based on knowledge and location of the property relative to the plant and/or contamination. These analytical results (once validated) have been included in the stream project data packages distributed to the residents and agencies. GM will continue evaluating additional areas requested by residents, and sampling as appropriate on a case-by-case basis, during the next reporting period. Meetings regarding Access Agreements with downstream property owners will continue.

The December 2003, January 2004, and February 2004 CERCLA Removal Action Monthly Progress Reports were submitted during the 1st quarter of 2004.

3.0 SUMMARIES OF ALL CHANGES MADE IN THE RFI DURING THE REPORTING PERIOD

The following changes were made to the RFI during the reporting period.

- The RFI Work Plan Addendum No. 3 (Hourly Parking Lot Investigation).
- The RFI Work Plan Addendum No. 4 (Test Pit Investigation).
- The RFI Work Plan Addendum No. 5 (Dye Tracer Study).

4.0 <u>COMMUNITY RELATIONS</u>

GM is conducting ongoing community relations by maintaining the toll free information telephone number. Individual meetings continue to be arranged to discuss sampling results with individual residents.

Meetings to review project status, both with property owners along the creek as well as with the general public, were held for January 27 and 28, 2004, at the Facility. The meeting minutes are published on the web site at <u>www.BedfordPowertrainCorrective</u> Action.com. The next meetings are scheduled to occur on April 28 and 29, 2004.

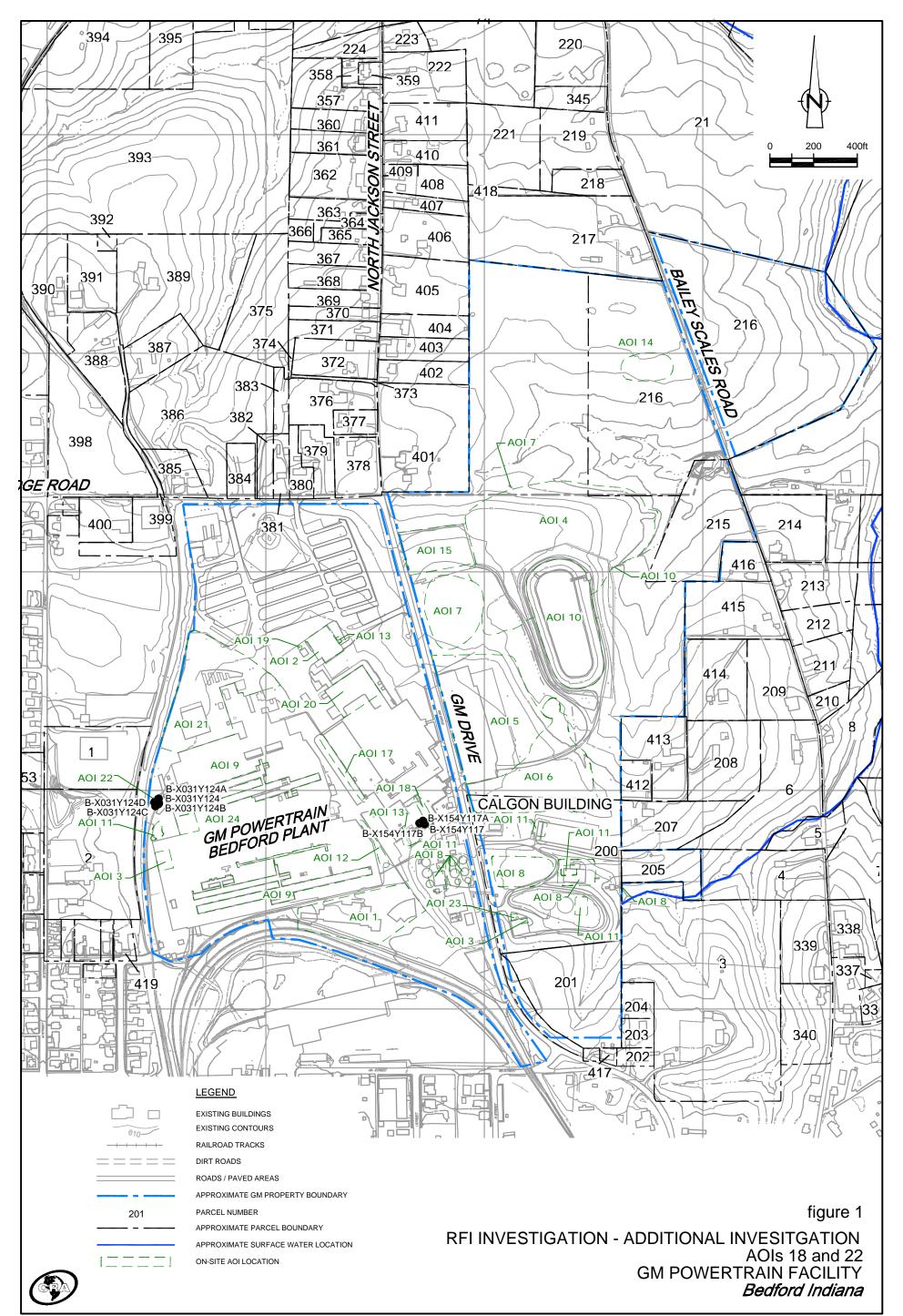
One CLP meeting occurred on February 6, 2004. The next regularly scheduled meeting with the Community Liaison Panel (CLP) is set for April 30, 2004. The CLP was formed to provide additional communication avenues for the community and the meetings are currently held at the GM plant every two months. The CLP meeting minutes are posted on the GM website at <u>www.BedfordPowertrainCorrectiveAction.com</u>.

The Information Center is available by appointment through Ms. Becki Akers, GM Communications at the project toll free number 866-223-0856. The repository located at the Bedford Public Library remains open at normal business hours. All data in the repository are also located on the web site listed in the previous paragraph.

5.0 <u>CHANGES IN PERSONNEL DURING THE REPORTING PERIOD</u>

Jeroen Winterink, CRA's current on-Site Oversight Engineer will be transitioning out of the project. His position is being taken over by CRA's Katie Kamm.

6.0 PROJECTED WORK FOR THE NEXT REPORTING PERIOD


Work projected for the next reporting period includes:

- comments received from the agencies regarding RFI Work Plan: Addendum No. 4 and No. 5 will be addressed;
- neighborhood Meeting scheduled for April 28, 2004;
- general Public Information Session scheduled for April 29, 2004;
- community Liaison Panel Meeting scheduled for April 30, 2004;
- Fact Sheet 8 will be distributed in April;
- removal Action activities will continue in the Upstream Parcels;
- ongoing monthly monitoring of groundwater elevations measurements;
- a draft Ecological Risk Assessment Problem Formulation will be submitted for review and comment in May;
- the Biological Assessment for the Indiana Bat will be discussed in April;
- work on the draft Wetland Mitigation Plan is ongoing;
- comments received from the agencies regarding the Site Source Control Work Plan Addendum No. 1 will be addressed;
- the spring and seep control structure construction has begun and will continue;
- implementation of the RFI Work Plan: Addendum No. 4 once approved by U.S. EPA;
- implementation of the RFI Work Plan: Addendum No. 5 once approved by U.S. EPA;
- completion and submittal of the Soil Technical Memorandum;
- preparation of an addendum to the RFI Work Plan for additional soil testing and groundwater investigation (RFI Work Plan Addendum No. 6);
- continued evaluation of RFI soil and groundwater to propose interim measures for various areas of the Facility;
- submittal of the IM Alternatives Review Report; and
- submittal of IM Work Plans for properties along the Western and Northern Tributaries.

7.0 COPIES OF DAILY REPORTS, INSPECTION REPORTS, LABORATORY/MONITORING DATA

Packages of analytical data from any sampling activity have been submitted as they become available, after validation, under separate cover, and will continue to be submitted during the next reporting period.

Validation of the results from additional delineation of Antimony at AOI 22 and PCBs at AOI 18, both of which exceeded the screening criteria, was completed during this reporting period. The analytical results and a sample location figure are attached to this report.

13968-00(087)GN-WA001 APR 06/2004

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date: Sample Depth:		B-X031Y124 S-110403-JC-001 11/4/2003 (0-2)	B-X031Y124 S-110403-JC-002 11/4/2003 (6-8)	B-X031Y124 5-110403-JC-003 11/4/2003 (32-33)	B-X031Y124A S-110503-JC-004 11/5/2003 (0-2)	B-X031Y124A S-110503-JC-005 11/5/2003 (6-8)	B-X031Y124A S-110503-JC-006 11/5/2003 (30-32)	B-X031Y124B S-110503-JC-007 11/5/2003 (0-2)	B-X031Y124B S-110503-JC-008 11/5/2003 (0-2)	B-X031Y124B S-110503-JC-009 11/5/2003 (6-8)	B-X031Y124B S-110503-JC-010 11/5/2003 (32-34)	B-X031Y124C S-110503-JC-011 11/5/2003 (0-2)	B-X031Y124C S-110503-JC-012 11/5/2003 (6-8)
Parameters	Units								Duplicate				
Volatiles													
1,1,1-Trichloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,1,2,2-Tetrachloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0) UJ	ND (6.0)	ND (5.5)	ND (5.2)
1,1,2-Trichloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,1-Dichloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,1-Dichloroethene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,2,4-Trichlorobenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,2-Dibromo-3-chloropropane (DBCP)	ug/kg	ND (8.8)	ND (9.9)	ND (11)	ND (9.7)	ND (15)	ND (9.5)	ND (12) UJ	ND (9.3) UJ	ND (14)	ND (12)	ND (11)	ND (10)
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,2-Dichlorobenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,2-Dichloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,2-Dichloropropane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,3-Dichlorobenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
1,4-Dichlorobenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
2-Butanone (Methyl Ethyl Ketone)	ug/kg	ND (18) UJ	ND (20) UJ	ND (21) UJ	ND (19)	ND (30)	ND (19)	ND (24)	ND (19)	ND (28)	ND (24)	ND (22)	ND (21)
2-Hexanone	ug/kg	ND (18)	ND (20)	ND (21)	ND (19)	ND (30)	ND (19)	ND (24)	ND (19)	ND (28)	ND (24)	ND (22)	ND (21)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ug/kg	ND (18)	ND (20)	ND (21)	ND (19)	ND (30)	ND (19)	ND (24)	ND (19)	ND (28)	ND (24)	ND (22)	ND (21)
Acetone	ug/kg	ND (18) UJ	8.4 J	ND (21) UJ	ND (19) UJ	ND (30) UJ	ND (19) UJ	ND (24) UJ	ND (19) UJ	ND (28)	ND (24) UJ	ND (22) UJ	ND (21) UJ
Benzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	0.78 J	ND (4.8)	0.66 J	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Bromodichloromethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Bromoform	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Bromomethane (Methyl Bromide)	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Carbon disulfide	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Carbon tetrachloride	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9) UJ	ND (7.4) UJ	ND (4.8) UJ	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0) UJ	ND (5.5) UJ	ND (5.2) UJ
Chlorobenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Chloroethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Chloroform (Trichloromethane)	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Chloromethane (Methyl Chloride)	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
cis-1,2-Dichloroethene	ug/kg	ND (2.2)	ND (2.5)	ND (2.7)	ND (2.4)	ND (3.7)	ND (2.4)	ND (3.0)	ND (2.3)	ND (3.5)	ND (3.0)	ND (2.7)	ND (2.6)
cis-1,3-Dichloropropene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Cyclohexane	ug/kg	ND (8.8)	ND (9.9)	ND (11)	ND (9.7)	ND (15)	ND (9.5)	ND (12)	ND (9.3)	ND (14)	ND (12)	ND (11)	ND (10)
Dibromochloromethane	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Dichlorodifluoromethane (CFC-12)	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9) UJ	ND (7.4) UJ	ND (4.8) UJ	ND (6.0) UJ	ND (4.6) UJ	ND (7.0)	ND (6.0) UJ	ND (5.5) UJ	ND (5.2) UJ
Ethylbenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Isopropylbenzene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Methyl acetate	ug/kg	ND (8.8)	ND (9.9)	ND (11)	ND (9.7)	ND (15)	ND (9.5)	ND (12)	ND (9.3)	ND (14)	ND (12)	ND (11)	ND (10)
Methyl cyclohexane	ug/kg	ND (8.8)	ND (9.9)	ND (11)	ND (9.7)	ND (15)	ND (9.5)	ND (12)	ND (9.3)	ND (14)	ND (12)	ND (11)	ND (10)
Methyl Tert Butyl Ether	ug/kg	ND (18)	ND (20)	ND (21)	ND (19)	ND (30)	ND (19)	ND (24)	ND (19)	ND (28)	ND (24)	ND (22)	ND (21)
Methylene chloride	ug/kg	1.3 J	ND (4.9)	ND (5.3)	ND (4.9)	1.6 J	ND (4.8)	1.7 J	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Styrene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Tetrachloroethene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Toluene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	0.76 J	ND (4.8)	0.73 J	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
trans-1,2-Dichloroethene	ug/kg	ND (2.2)	ND (2.5) ND (4.9)	ND (2.7)	ND (2.4) ND (4.9)	ND (3.7)	ND (2.4) ND (4.8)	ND (3.0) ND (6.0)	ND (2.3)	ND (3.5)	ND (3.0) ND (6.0)	ND (2.7)	ND (2.6)
trans-1,3-Dichloropropene	ug/kg	ND (4.4)	()	ND (5.3)	()	ND (7.4)	()	()	ND (4.6)	ND (7.0)	()	ND (5.5)	ND (5.2)
Trichloroethene	ug/kg	ND (4.4)	ND (4.9)	ND (5.3)	ND (4.9)	ND (7.4)	ND (4.8)	ND (6.0)	ND (4.6)	ND (7.0)	ND (6.0)	ND (5.5)	ND (5.2)
Trichlorofluoromethane (CFC-11) Trifluorotrichloroethane (Freon 113)	ug/kg	ND (4.4)	ND (4.9) ND (4.9)	ND (5.3)	ND (4.9) UJ	ND (7.4) UJ	ND (4.8) UJ ND (4.8)	ND (6.0) UJ	ND (4.6) UJ	ND (7.0) UJ ND (7.0)	ND (6.0) UJ ND (6.0)	ND (5.5) UJ	ND (5.2) UJ ND (5.2)
	ug/kg	ND (4.4)	()	ND (5.3)	ND (4.9)	ND (7.4)	()	ND (6.0)	ND (4.6)	()	()	ND (5.5)	
Vinyl chloride Xylene (total)	ug/kg	ND (4.4) ND (4.4)	ND (4.9) ND (4.9)	ND (5.3) ND (5.3)	ND (4.9) ND (4.9)	ND (7.4) ND (7.4)	ND (4.8) ND (4.8)	ND (6.0) ND (6.0)	ND (4.6) ND (4.6)	ND (7.0) ND (7.0)	ND (6.0) ND (6.0)	ND (5.5) ND (5.5)	ND (5.2) ND (5.2)
Xyiele (lotal)	ug/kg	ND (4.4)	ND (4.9)	ND (5.5)	IND (4.9)	ND (7.4)	IND (4.8)	IND (8.0)	1410 (4.6)	IND (7.0)	IND (8.0)	ND (5.5)	ND (5.2)
Semi-volatiles													
2,2'-oxybis(1-Chloropropane) (bis(2-chloroisopropyl) ether)	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
2,4,5-Trichlorophenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
2,4,6-Trichlorophenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
2,4-Dichlorophenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
2,4-Dimethylphenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
2,4-Dinitrophenol	ug/kg	ND (1700)	ND (1900)	ND (2000)	ND (7000)	ND (1800)	ND (1900) UJ	ND (1800)	ND (1800)	ND (1800) UJ	ND (2000) UJ	ND (1700)	ND (18000)
2,4-Dinitrotoluene	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
2,6-Dinitrotoluene	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
2-Chloronaphthalene	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
2-Chlorophenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date: Sample Depth:		B-X031Y124 S-110403-JC-001 11/4/2003 (0-2)	B-X031Y124 S-110403-JC-002 11/4/2003 (6-8)	B-X031Y124 S-110403-JC-003 11/4/2003 (32-33)	B-X031Y124A S-110503-JC-004 11/5/2003 (0-2)	B-X031Y124A S-110503-JC-005 11/5/2003 (6-8)	B-X031Y124A S-110503-JC-006 11/5/2003 (30-32)	B-X031Y124B S-110503-JC-007 11/5/2003 (0-2)	B-X031Y124B S-110503-JC-008 11/5/2003 (0-2) Duvlicate	B-X031Y124B S-110503-JC-009 11/5/2003 (6-8)	B-X031Y124B S-110503-JC-010 11/5/2003 (32-34)	B-X031Y124C S-110503-JC-011 11/5/2003 (0-2)	B-X031Y124C S-110503-JC-012 11/5/2003 (6-8)
Parameters	Units								,				
2-Methylnaphthalene	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
2-Methylphenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
2-Nitroaniline	ug/kg	ND (1700)	ND (1900)	ND (2000)	ND (7000)	ND (1800)	ND (1900)	ND (1800)	ND (1800)	ND (1800)	ND (2000)	ND (1700)	ND (18000)
2-Nitrophenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
3,3'-Dichlorobenzidine	ug/kg	ND (1700) UJ	ND (1900)	ND (2000)	ND (7000)	ND (1800)	ND (1900)	ND (1800)	ND (1800)	ND (1800)	ND (2000)	ND (1700)	ND (18000)
3-Nitroaniline	ug/kg	ND (1700)	ND (1900)	ND (2000)	ND (7000)	ND (1800)	ND (1900)	ND (1800)	ND (1800)	ND (1800)	ND (2000)	ND (1700)	ND (18000)
4,6-Dinitro-2-methylphenol	ug/kg	ND (1700) UJ	ND (1900)	ND (2000) UJ	ND (7000)	ND (1800)	ND (1900) UJ	ND (1800)	ND (1800)	ND (1800) UJ	ND (2000) UJ	ND (1700)	ND (18000)
4-Bromophenyl phenyl ether	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
4-Chloro-3-methylphenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
4-Chloroaniline	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
4-Chlorophenyl phenyl ether	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
4-Methylphenol	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
4-Nitroaniline 4-Nitrophenol	ug/kg	ND (1700)	ND (1900) UJ ND (1900)	ND (2000) ND (2000)	ND (7000)	ND (1800) ND (1800)	ND (1900) ND (1900) UJ	ND (1800)	ND (1800) ND (1800)	ND (1800) ND (1800) UJ	ND (2000)	ND (1700)	ND (18000) ND (18000)
Acenaphthene	ug/kg	ND (1700) ND (350)	ND (1900) ND (390)	ND (2000) ND (410)	ND (7000)	ND (1800) ND (370)	ND (1900) UJ ND (380)	ND (1800)	ND (1800) ND (370)	ND (1800) UJ ND (370)	ND (2000) UJ	ND (1700) 130 J	. ,
Acenaphthylene	ug/kg ug/kg	ND (350)	ND (390)	ND (410)	ND (1400) ND (1400)	ND (370)	ND (380)	ND (360) ND (360)	ND (370)	ND (370)	ND (420) ND (420)	ND (350)	ND (3700) ND (3700)
Acetophenone	ug/kg ug/kg	ND (350)	ND (390)	ND (410) ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Anthracene	ug/kg ug/kg	65 J	64 J	ND (410) ND (410)	ND (1400)	ND (370)	ND (380)	22 J	ND (370)	ND (370)	ND (420)	260 J	ND (3700)
Attracine	ug/kg ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Benzaldehvde	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Benzo(a)anthracene	ug/kg	110 J	50 J	ND (410)	75 J	ND (370)	ND (380)	72 J	37 [ND (370)	ND (420)	380	ND (3700)
Benzo(a)pyrene	ug/kg	66 J	50 J	ND (410)	100 J	ND (370)	ND (380)	901	39 [ND (370)	ND (420)	390	ND (3700)
Benzo(b)fluoranthene	ug/kg	220 J	160 I	ND (410)	130 J	ND (370)	ND (380)	96 J	46 J	ND (370)	ND (420)	480	ND (3700)
Benzo(g,h,i)pervlene	ug/kg	61 J	40 J	ND (410)	ND (1400)	ND (370)	ND (380)	82 J	25 [ND (370)	ND (420)	190 J	ND (3700)
Benzo(k)fluoranthene	ug/kg	130 J	10 J	ND (410)	ND (1400)	ND (370)	ND (380)	61 J	26]	ND (370)	ND (420)	310 J	ND (3700)
Biphenyl	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
bis(2-Chloroethoxy)methane	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
bis(2-Chloroethyl)ether	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
bis(2-Ethylhexyl)phthalate	ug/kg	ND (350) UJ	84 J	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Butyl benzylphthalate	ug/kg	ND (350) UJ	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Caprolactam	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Carbazole	ug/kg	ND (350)	ND (390) UJ	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	140 J	ND (3700)
Chrysene	ug/kg	140 J	71 J	ND (410)	95 J	ND (370)	ND (380)	80 J	40 J	ND (370)	ND (420)	410	ND (3700)
Dibenz(a,h)anthracene	ug/kg	ND (350) UJ	87 J	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Dibenzofuran	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	59 J	ND (3700)
Diethyl phthalate	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380) UJ	ND (360)	ND (370)	ND (370)	ND (420) UJ	ND (350)	ND (3700)
Dimethyl phthalate	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Di-n-butylphthalate	ug/kg	ND (350)	ND (390) U	ND (410) U	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Di-n-octyl phthalate	ug/kg	ND (350) UJ	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Fluoranthene	ug/kg	300 J	140 J	ND (410)	120 J	ND (370)	ND (380)	120 J	61 J	ND (370)	ND (420)	1400	ND (3700)
Fluorene	ug/kg	ND (350)	ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	120 J	ND (3700)

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date:		B-X031Y124 S-110403-JC-001 11/4/2003	B-X031Y124 S-110403-JC-002 11/4/2003	B-X031Y124 S-110403-JC-003 11/4/2003	B-X031Y124A S-110503-JC-004 11/5/2003	B-X031Y124A S-110503-JC-005 11/5/2003	B-X031Y124A S-110503-JC-006 11/5/2003	B-X031Y124B S-110503-JC-007 11/5/2003	B-X031Y124B S-110503-JC-008 11/5/2003	B-X031Y124B S-110503-JC-009 11/5/2003	B-X031Y124B S-110503-JC-010 11/5/2003	B-X031Y124C S-110503-JC-011 11/5/2003	B-X031Y124C S-110503-JC-012 11/5/2003
Sample Depth:		(0-2)	(6-8)	(32-33)	(0-2)	(6-8)	(30-32)	(0-2)	(0-2)	(6-8)	(32-34)	(0-2)	(6-8)
Parameters	Units								Duplicate				
Hexachlorobenzene	ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Hexachlorobutadiene	ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Hexachlorocyclopenta	6. 6		ND (1900)	ND (2000) UJ	ND (7000)	ND (1800)	ND (1900) UJ	ND (1800)	ND (1800)	ND (1800)	ND (2000) UJ	ND (1700)	ND (18000)
Hexachloroethane	ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Indeno(1,2,3-cd)pyrer			100 J	ND (410)	ND (1400)	ND (370)	ND (380)	54 J	25 J	ND (370)	ND (420)	190 J	ND (3700)
Isophorone	ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Naphthalene	ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Nitrobenzene N-Nitrosodi-n-propyl	ug/kg		ND (390) ND (390)	ND (410) ND (410)	ND (1400) ND (1400)	ND (370) ND (370)	ND (380) ND (380)	ND (360) ND (360)	ND (370) ND (370)	ND (370) ND (370)	ND (420) ND (420)	ND (350) ND (350)	ND (3700) ND (3700)
N-Nitrosodiphenylan			ND (390)	ND (410) ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370)	ND (420)	ND (350)	ND (3700)
Pentachlorophenol	ug/kg ug/kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UJ	ND (420)	ND (350)	ND (3700)
Phenanthrene	ug/ kg		90 J	ND (410)	ND (1400)	ND (370)	ND (380)	87 J	54 J	ND (370)	ND (420)	1300	ND (3700)
Phenol	ug/ kg ug/ kg		ND (390)	ND (410)	ND (1400)	ND (370)	ND (380)	ND (360)	ND (370)	ND (370) UI	ND (420)	ND (350)	ND (3700)
Pyrene	ug/kg	, , ,	76 J	ND (410)	88 [ND (370)	ND (380)	110 J	37 [ND (370)	ND (420)	760 J	ND (3700)
-)	-6/-6	,,	,		,	((000)	,	,			,	
Metals													
Aluminum	mg/k	g 2090	4470	5890 J	5760	4910	4250	4620	3440	6130	6610	2650	4870
Antimony	mg/k	g ND (6.3)	ND (7.1)	ND (7.4)	ND (6.5)	1.0 J	ND (7.0)	0.32 J	0.59 J	ND (6.7)	ND (7.6)	ND (6.4)	1.1 J
Arsenic	mg/k		3.6	6.8	2.9	4.7	2.0	4.8	4.5	1.3	4.5	1.4	4.5
Barium	mg/k	g 19.5 J	34.9	42.1 J	45.5	59.0	70.7	49.7	35.4	57.8	85.8	21.7	36.3
Beryllium	mg/k	g 0.19 J	0.34 J	1.6 J	0.64	0.33 J	0.69	ND (0.55) U	0.32 J	0.37 J	1.6	ND (0.54) U	ND (0.57) U
Cadmium	mg/k	g 0.35 J	0.31 J	0.95	0.32 J	0.41 J	3.7	0.48 J	0.33 J	0.23 J	1.0	0.21 J	0.33 J
Chromium Total	mg/k		10.9	13.9 J	8.4	11.8	6.8	8.5	6.4	5.0	12.5	5.4	9.8
Cobalt	mg/k		3.0 J	12.0 J	3.5 J	8.5	5.2 J	2.3 J	3.0 J	0.88 J	10.3	1.8 J	3.3 J
Copper	mg/k		12.4	18.9	44.8	8.1	5.7	22.2	15.5	1.8 J	18.7	47.9	20.8
Cyanide (amenable)	mg/k		ND (0.59)	0.12 J	ND (0.55)	ND (0.56)	ND (0.58)	ND (0.55)	0.13 J	0.13 J	ND (0.64)	0.22 J	ND (0.57)
Cyanide (total)	mg/k		ND (0.59)	0.12 J	ND (0.55)	ND (0.56)	ND (0.58)	ND (0.55)	0.13 J	0.13 J	ND (0.64)	0.34 J	ND (0.57)
Iron	mg/k		8080	30400 J	8200	11300	8240	10200	9110	3190	21700	4030	14500
Lead	mg/k		10.0	14.9 J	16.6	28.1	6.0	42.3	40.6	1.3	8.6	10.6	36.6
Manganese	mg/k		714	113 J	91.6	792	266	263	402	804	109	69.5	235
Mercury	mg/k		0.023 J	0.031 J	0.063 J	0.026 J	0.066 J	0.029 J	0.031 J	ND (0.11)	0.052 J	ND (0.11)	0.032 J
Nickel Selenium	mg/k		8.5 ND (0.59)	42.6 J ND (0.62)	21.7 ND (0.55)	5.9 ND (0.56)	14.0 ND (0.58)	4.4 ND (0.55)	10.5 ND (0.56)	1.9 J ND (0.56)	36.7 0.56 J	7.2 ND (0.54)	6.2 ND (0.57)
Silver	mg/k mg/k		ND (0.59) ND (1.2)	ND (0.82) ND (1.2)	ND (0.55) ND (1.1)	ND (0.56) ND (1.1)	ND (0.58) ND (1.2)	ND (0.55) ND (1.1)	ND (0.56) ND (1.1)	ND (0.56) ND (1.1)	0.56 J ND (1.3)	ND (0.54) ND (1.1)	ND (0.57) ND (1.1)
Thallium	mg/k		ND (1.2)	ND (1.2)	0.65 J	0.88 J	0.88 J	0.47 J	0.63 [0.48 J	0.86 J	ND (1.1)	0.53 J
Vanadium	mg/k		11.2	24.1 J	12.8	12.6	8.4	13.4	9.4	3.8 J	14.8	4.6 J	13.4
Zinc	mg/k		31.7	83.4 J	54.6	42.6	40.8	55.7	47.3	16.4	68.1	25.2	44.5
		6		,									
PCBs													
Aroclor-1016 (PCB-10	16) ug/kg	ND (35)	ND (39)	ND (41)	ND (36)	ND (37)	ND (38)	ND (36)	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Aroclor-1221 (PCB-12			ND (39)	ND (41)	ND (36)	ND (37)	ND (38)	ND (36)	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Aroclor-1232 (PCB-12			ND (39)	ND (41)	ND (36)	ND (37)	ND (38)	ND (36)	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Aroclor-1242 (PCB-12			ND (39)	ND (41)	ND (36)	ND (37)	ND (38)	ND (36)	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Aroclor-1248 (PCB-12	48) ug/kg	, ND (35)	ND (39)	ND (41)	28 J	ND (37)	ND (38)	44	ND (37)	ND (37)	ND (42)	7.3 J	ND (37)
Aroclor-1254 (PCB-12	54) ug/kg	, ND (35)	ND (39)	ND (41)	ND (36)	ND (37)	ND (38)	ND (36)	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Aroclor-1260 (PCB-12	60) ug/kg	g ND (35)	ND (39)	ND (41)	18 J	ND (37)	ND (38)	22 J	ND (37)	ND (37)	ND (42)	ND (35)	ND (37)
Sum of detected PCBs	(ND=0) ug/kg	; 0	0	0	46 J	0	0	66 J	0	0	0	7.3 J	0
General Chemistry													
Total Solids	%	94.8	84.2	80.8	91.7	88.7	85.9	90.7	89.7	89.4	78.6	93.3	88.2

Notes:

U Non-detect at associated value. J Estimated.

UJ Non-detect at associated value. The associated value is estimated.

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date: Sample Depth:	B-X031Y124C S-110503-JC-013 11/5/2003 (32-33)	B-X031Y124D S-110603-JC-014 11/6/2003 (0-2)	B-X031Y124D S-110603-JC-015 11/6/2003 (6-8)	B-X031Y124D S-110603-JC-016 11/6/2003 (30-32)	B-X154Y117 S-111203-JC-024 11/12/2003 (0-2)	B-X154Y117 S-111203-JC-025 11/12/2003 (6-8)	B-X154Y117 S-111203-JC-026 11/12/2003 (24-25)	B-X154Y117A S-111203-JC-021 11/12/2003 (0-2)	B-X154Y117A S-111203-JC-022 11/12/2003 (6-8)	B-X154Y117A S-111203-JC-023 11/12/2003 (24-25)	B-X154Y117B S-111003-JC-017 11/10/2003 (0-2)	B-X154Y117B S-111003-JC-018 11/10/2003 (6-8)	B-X154Y117B S-111003-JC-019 11/10/2003 (6-8)	B-X154Y117B S-111003-JC-020 11/10/2003 (24-25)
Parameters Units													Duplicate	
Volatiles														
1,1,1-Trichloroethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,1,2,2-Tetrachloroethane ug/kg 1,1,2-Trichloroethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,1,2-Trichloroethane ug/kg 1,1-Dichloroethane ug/kg		ND (5.3) ND (5.3)	ND (6.2) ND (6.2)	ND (6.3) ND (6.3)	ND (4.5) ND (4.5)	ND (6.5) ND (6.5)	ND (6.3) ND (6.3)	ND (260) ND (260)	ND (6.0) ND (6.0)	ND (6.9) ND (6.9)	ND (4.8) ND (4.8)	ND (6.5) ND (6.5)	ND (5.9) ND (5.9)	ND (6.6) ND (6.6)
1,1-Dichloroethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,2,4-Trichlorobenzene ug/kg		ND (5.3) UJ	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,2-Dibromo-3-chloropropane (DBCP) ug/kg		ND (11) UJ	ND (12)	ND (13)	ND (8.9)	ND (13)	ND (13)	ND (530)	ND (12)	ND (14)	ND (9.6)	ND (13)	ND (12)	ND (13)
1,2-Dibromoethane (Ethylene Dibromide) ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,2-Dichlorobenzene ug/kg	ND (6.9)	ND (5.3) UJ	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,2-Dichloroethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,2-Dichloropropane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
1,3-Dichlorobenzene ug/kg 1,4-Dichlorobenzene ug/kg		ND (5.3) UJ ND (5.3) UJ	ND (6.2) ND (6.2)	ND (6.3) ND (6.3)	ND (4.5) ND (4.5)	ND (6.5) ND (6.5)	ND (6.3) ND (6.3)	ND (260) ND (260)	ND (6.0) ND (6.0)	ND (6.9) ND (6.9)	ND (4.8) ND (4.8)	ND (6.5) ND (6.5)	ND (5.9) ND (5.9)	ND (6.6) ND (6.6)
1,4-Dichlorobenzene ug/kg 2-Butanone (Methyl Ethyl Ketone) ug/kg		ND (5.3) UJ ND (21)	ND (6.2) ND (25)	ND (6.5) ND (25)	ND (4.5) ND (18)	ND (6.5) ND (26)	ND (6.5) ND (25)	ND (260) ND (1100)	ND (6.0) ND (24)	ND (6.9) ND (27)	ND (4.8) ND (19) UJ	ND (6.5) ND (26) UI	ND (5.9) ND (24) UI	ND (6.6) ND (27) UJ
2-Hexanone ug/kg		ND (21)	ND (25)	ND (25)	ND (18)	ND (26)	ND (25)	ND (1100)	ND (24)	ND (27)	ND (19)	ND (26)	ND (24)	ND (27)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ug/kg		ND (21)	ND (25)	ND (25)	ND (18)	ND (26)	ND (25)	ND (1100)	ND (24)	ND (27)	ND (19)	ND (26)	ND (24)	ND (27)
Acetone ug/kg		ND (21) UJ	ND (25) UJ	ND (25) UJ	ND (18) UJ	ND (26) UJ	12 J	340 J	11 J	17 J	ND (19) UJ	13 J	13 J	12 J
Benzene ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	0.54 J	ND (6.5)	ND (5.9)	ND (6.6)
Bromodichloromethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Bromoform ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Bromomethane (Methyl Bromide) ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Carbon disulfide ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Carbon tetrachloride ug/kg Chlorobenzene ug/kg		ND (5.3) UJ ND (5.3)	ND (6.2) UJ ND (6.2)	ND (6.3) UJ ND (6.3)	ND (4.5) ND (4.5)	ND (6.5) ND (6.5)	ND (6.3) ND (6.3)	ND (260) ND (260)	ND (6.0) ND (6.0)	ND (6.9) ND (6.9)	ND (4.8) ND (4.8)	ND (6.5) ND (6.5)	ND (5.9) ND (5.9)	ND (6.6) ND (6.6)
Chloroethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Chloroform (Trichloromethane) ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Chloromethane (Methyl Chloride) ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
cis-1,2-Dichloroethene ug/kg	ND (3.4)	ND (2.7)	ND (3.1)	ND (3.1)	ND (2.2)	ND (3.3)	ND (3.1)	63 J	ND (3.0)	ND (3.4)	ND (2.4)	ND (3.2)	ND (3.0)	ND (3.3)
cis-1,3-Dichloropropene ug/kg	ND (6.9)	ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Cyclohexane ug/kg		ND (11)	ND (12)	ND (13)	ND (8.9)	ND (13)	ND (13)	ND (530)	ND (12)	ND (14)	ND (9.6)	ND (13)	ND (12)	ND (13)
Dibromochloromethane ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Dichlorodifluoromethane (CFC-12) ug/kg Ethylbenzene ug/kg		ND (5.3) UJ ND (5.3)	ND (6.2) UJ ND (6.2)	ND (6.3) UJ	ND (4.5) ND (4.5)	ND (6.5) ND (6.5)	ND (6.3) ND (6.3)	ND (260) ND (260)	ND (6.0) ND (6.0)	ND (6.9) ND (6.9)	ND (4.8) ND (4.8)	ND (6.5) ND (6.5)	ND (5.9) ND (5.9)	ND (6.6) ND (6.6)
Ethylbenzene ug/kg Isopropylbenzene ug/kg		ND (5.3)	ND (6.2) ND (6.2)	ND (6.3) ND (6.3)	ND (4.5) ND (4.5)	ND (6.5) ND (6.5)	ND (6.3) ND (6.3)	ND (260) ND (260)	ND (6.0) ND (6.0)	ND (6.9) ND (6.9)	ND (4.8) ND (4.8)	ND (6.5) ND (6.5)	ND (5.9) ND (5.9)	ND (6.6) ND (6.6)
Methyl acetate ug/kg		ND (11)	ND (12)	ND (13)	ND (8.9)	ND (13)	ND (13)	ND (530)	ND (12)	ND (14)	ND (9.6)	ND (13)	ND (12)	ND (13)
Methyl cyclohexane ug/kg		ND (11)	ND (12)	ND (13)	ND (8.9)	ND (13)	ND (13)	ND (530)	ND (12)	ND (14)	0.72 J	ND (13)	ND (12)	ND (13)
Methyl Tert Butyl Ether ug/kg		ND (21)	ND (25)	ND (25)	ND (18)	ND (26)	ND (25)	ND (1100)	ND (24)	ND (27)	ND (19)	ND (26)	ND (24)	ND (27)
Methylene chloride ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5) U	ND (6.3) U	ND (260)	ND (6.0)	ND (6.9) U	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Styrene ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Tetrachloroethene ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	1100	ND (6.0)	ND (6.9)	0.67 J	ND (6.5)	ND (5.9)	ND (6.6)
Toluene ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	26 J	ND (6.0)	ND (6.9)	0.88 J	ND (6.5)	ND (5.9)	ND (6.6)
trans-1,2-Dichloroethene ug/kg trans-1,3-Dichloropropene ug/kg		ND (2.7) ND (5.3)	ND (3.1) ND (6.2)	ND (3.1) ND (6.3)	ND (2.2) ND (4.5)	ND (3.3) ND (6.5)	ND (3.1) ND (6.3)	ND (130) ND (260)	ND (3.0) ND (6.0)	ND (3.4) ND (6.9)	ND (2.4) ND (4.8)	ND (3.2) ND (6.5)	ND (3.0) ND (5.9)	ND (3.3) ND (6.6)
Trichloroethene ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	210 J	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Trichlorofluoromethane (CFC-11) ug/kg		ND (5.3) UJ	ND (6.2) UJ	ND (6.3) UJ	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Trifluorotrichloroethane (Freon 113) ug/kg	ND (6.9)	ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Vinyl chloride ug/kg		ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Xylene (total) ug/kg	ND (6.9)	ND (5.3)	ND (6.2)	ND (6.3)	ND (4.5)	ND (6.5)	ND (6.3)	ND (260)	ND (6.0)	ND (6.9)	ND (4.8)	ND (6.5)	ND (5.9)	ND (6.6)
Semi-volatiles														
2,2'-oxybis(1-Chloropropane) (bis(2-chloroisopropyl) ether) ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2,4,5-Trichlorophenol ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2,4,6-Trichlorophenol ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2,4-Dichlorophenol ug/kg 2,4-Dimethylphenol ug/kg		ND (350) ND (350)	ND (420) ND (420)	ND (420) ND (420)	ND (380) ND (380)	ND (450) ND (450)	ND (450) ND (450)	ND (380) ND (380)	ND (400) ND (400)	ND (430) ND (430)	ND (370) ND (370)	ND (410) ND (410)	ND (410) ND (410)	ND (410) ND (410)
2,4-Dimetryiphenol ug/kg 2,4-Dinitrophenol ug/kg		ND (350) ND (1700)	ND (420) ND (2000)	ND (420) ND (2100)	ND (380) ND (1800)	ND (450) ND (2200)	ND (450) ND (2200)	ND (380) ND (1800)	ND (400) ND (2000)	ND (430) ND (2100)	ND (370) ND (1800)	ND (410) ND (2000)	ND (410) ND (2000)	ND (410) ND (2000)
2,4-Dinitrotoluene ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2,6-Dinitrotoluene ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2-Chloronaphthalene ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2-Chlorophenol ug/kg		ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date: Sample Depth:		B-X031Y124C S-110503-JC-013 11/5/2003 (32-33)	B-X031Y124D S-110603-JC-014 11/6/2003 (0-2)	B-X031Y124D S-110603-JC-015 11/6/2003 (6-8)	B-X031Y124D S-110603-JC-016 11/6/2003 (30-32)	B-X154Y117 S-111203-JC-024 11/12/2003 (0-2)	B-X154Y117 S-111203-JC-025 11/12/2003 (6-8)	B-X154Y117 S-111203-JC-026 11/12/2003 (24-25)	B-X154Y117A S-111203-JC-021 11/12/2003 (0-2)	B-X154Y117A S-111203-JC-022 11/12/2003 (6-8)	B-X154Y117A S-111203-JC-023 11/12/2003 (24-25)	B-X154Y117B S-111003-JC-017 11/10/2003 (0-2)	B-X154Y117B S-111003-JC-018 11/10/2003 (6-8)	B-X154Y117B S-111003-JC-019 11/10/2003 (6-8) Duplicate	B-X154Y117B S-111003-JC-020 11/10/2003 (24-25)
Parameters	Units													Dupticute	
2-Methylnaphthalene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2-Methylphenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
2-Nitroaniline	ug/kg	ND (2100)	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (2000)	ND (2000)	ND (2000)
2-Nitrophenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
3,3'-Dichlorobenzidine	ug/kg	ND (2100)	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (2000) UJ	ND (2000) UJ	ND (2000)
3-Nitroaniline	ug/kg	ND (2100)	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (2000)	ND (2000)	ND (2000)
4,6-Dinitro-2-methylphenol	ug/kg	ND (2100) UJ	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (2000)	ND (2000)	ND (2000)
4-Bromophenyl phenyl ether	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
4-Chloro-3-methylphenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
4-Chloroaniline	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
4-Chlorophenyl phenyl ether	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
4-Methylphenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
4-Nitroaniline	ug/kg	ND (2100)	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (2000)	ND (2000)	ND (2000)
4-Nitrophenol	ug/kg	ND (2100) UJ	ND (1700)	ND (2000)	ND (2100)	ND (1800) UJ	ND (2200) UJ	ND (2200) UJ	ND (1800)	ND (2000) UJ	ND (2100)	ND (1800)	ND (2000)	ND (2000)	ND (2000)
Acenaphthene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Acenaphthylene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	74 J	ND (410)	ND (410)	ND (410)
Acetophenone	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Anthracene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	72 J	ND (400)	ND (430)	73 J	ND (410)	130 J	ND (410)
Atrazine	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Benzaldehyde	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Benzo(a)anthracene	ug/kg	ND (430)	22 J	ND (420)	ND (420)	21 J	80 J	ND (450)	80 J	ND (400)	ND (430)	40 J	ND (410) UJ	ND (410) UJ	ND (410)
Benzo(a)pyrene	ug/kg	ND (430)	23 J	ND (420)	ND (420)	33 J	98 J	ND (450)	98 J	24 J	ND (430)	84 J	110 J	110 J	ND (410)
Benzo(b)fluoranthene	ug/kg	ND (430)	29 J	ND (420)	ND (420)	31 J	110 J	ND (450)	190 J	32 J	ND (430)	110 J	110 J	130 J	ND (410)
Benzo(g.h,i)perylene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	29 J	70 J	ND (450)	89 J	ND (400)	ND (430)	88 J	ND (410)	ND (410)	ND (410)
Benzo(k)fluoranthene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	35 J	ND (450)	130 J	ND (400)	ND (430)	30 J	ND (410)	120 J	ND (410)
Biphenyl	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
bis(2-Chloroethoxy)methane	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
bis(2-Chloroethyl)ether	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
bis(2-Ethylhexyl)phthalate	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410) UJ	ND (410) UJ	ND (410)
Butyl benzylphthalate	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410) UJ	ND (410) UJ	ND (410)
Caprolactam	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Carbazole	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380) 27 J	ND (450) 100 J	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410) 28 J	ND (410)
Chrysene	ug/kg	ND (430)	34 J	ND (420)	ND (420)	,	,	ND (450)	120 J	33 J	ND (430)	71 J	ND (410) UJ	,	ND (410)
Dibenz(a,h)anthracene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	82 J	ND (400)	ND (430)	25 J	ND (410)	ND (410)	ND (410)
Dibenzofuran Diethyl phthalate	ug/kg	ND (430) ND (430) UJ	ND (350) ND (350)	ND (420) ND (420)	ND (420) ND (420)	ND (380) ND (380)	ND (450) ND (450)	ND (450) ND (450)	ND (380) ND (380)	ND (400) ND (400)	ND (430) ND (430)	70 J ND (370)	ND (410) ND (410)	ND (410) ND (410)	ND (410) ND (410)
	ug/kg	. , ,	()	. ,	. ,	. ,	()	. ,	. ,	()	. ,	. ,	. ,	()	. ,
Dimethyl phthalate	ug/kg	ND (430) ND (430)	ND (350)	ND (420) ND (420)	ND (420) ND (420)	ND (380) ND (380)	ND (450)	ND (450) ND (450)	ND (380) ND (380)	ND (400) ND (400)	ND (430) 65 J	ND (370) ND (370)	ND (410) 96 J	ND (410) 95 J	ND (410)
Di-n-butylphthalate Di-n-butylphthalate	ug/kg	. ,	ND (350)	. ,	. ,	. ,	ND (450)	. ,	. ,	()	65 J ND (430)	ND (370) ND (370)		95 J ND (410)	ND (410)
Di-n-octyl phthalate Fluoranthene	ug/kg	ND (430) ND (430)	ND (350) 28 J	ND (420)	ND (420) ND (420)	ND (380) 49 J	ND (450) 220 J	ND (450)	ND (380) 220 J	ND (400) 40 J	ND (430) ND (430)	ND (370) 63 J	ND (410) 140 J	ND (410) 150 I	ND (410)
Fluoranthene Fluorene	ug/kg	ND (430) ND (430)	28 J ND (350)	ND (420) ND (420)	ND (420) ND (420)	49 J ND (380)	220 J ND (450)	ND (450) ND (450)	220 J ND (380)	40 J ND (400)	ND (430) ND (430)	63 J ND (370)	140 J ND (410)	150 J ND (410)	ND (410) ND (410)
riuorene	ug/kg	1450)	IND (300)	1812 (420)	IND (420)	IND (380)	1812 (450)	1112 (400)	IND (380)	1112 (400)	INL/ (430)	1812 (370)	IND (410)	1812 (410)	1812 (410)

ANALYTICAL RESULTS SUMMARY NOVEMBER 2003

Sample Location: Sample ID: Sample Date: Sample Depth:		B-X031Y124C S-110503-JC-013 11/5/2003 (32-33)	B-X031Y124D S-110603-JC-014 11/6/2003 (0-2)	B-X031Y124D S-110603-JC-015 11/6/2003 (6-8)	B-X031Y124D S-110603-JC-016 11/6/2003 (30-32)	B-X154Y117 S-111203-JC-024 11/12/2003 (0-2)	B-X154Y117 S-111203-JC-025 11/12/2003 (6-8)	B-X154Y117 S-111203-JC-026 11/12/2003 (24-25)	B-X154Y117A S-111203-JC-021 11/12/2003 (0-2)	B-X154Y117A S-111203-JC-022 11/12/2003 (6-8)	B-X154Y117A S-111203-JC-023 11/12/2003 (24-25)	B-X154Y117B S-111003-JC-017 11/10/2003 (0-2)	B-X154Y117B S-111003-JC-018 11/10/2003 (6-8)	B-X154Y117B S-111003-JC-019 11/10/2003 (6-8) Duplicate	B-X154Y117B S-111003-JC-020 11/10/2003 (24-25)
Parameters	Units													·,	
Hexachlorobenzene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Hexachlorobutadiene	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Hexachlorocyclopentadiene	ug/kg	ND (2100) UJ	ND (1700)	ND (2000)	ND (2100)	ND (1800)	ND (2200)	ND (2200)	ND (1800) UJ	ND (2000) UJ	ND (2100) UJ	ND (1800)	ND (2000)	ND (2000)	ND (2000)
Hexachloroethane	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Indeno(1,2,3-cd)pyrene Isophorone	ug/kg	ND (430) ND (430)	ND (350) ND (350)	ND (420) ND (420)	ND (420) ND (420)	26 J ND (380)	58 J ND (450)	ND (450) ND (450)	130 J ND (380)	ND (400) ND (400)	ND (430) ND (430)	72 J ND (370)	ND (410) ND (410)	95 J ND (410)	ND (410) ND (410)
Naphthalene	ug/kg ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410) ND (410)	ND (410) ND (410)	ND (410)
Nitrobenzene	ug/kg ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410) ND (410)	ND (410) ND (410)	ND (410)
N-Nitrosodi-n-propylamine	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
N-Nitrosodiphenylamine	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Pentachlorophenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Phenanthrene	ug/kg	ND (430)	31 J	ND (420)	ND (420)	28 J	110 J	ND (450)	140 J	35 J	ND (430)	100 J	130 J	140 J	ND (410)
Phenol	ug/kg	ND (430)	ND (350)	ND (420)	ND (420)	ND (380)	ND (450)	ND (450)	ND (380)	ND (400)	ND (430)	ND (370)	ND (410)	ND (410)	ND (410)
Pyrene	ug/kg	ND (430)	29 J	ND (420)	ND (420)	47 J	210 J	ND (450)	180 J	34 J	ND (430)	61 J	ND (410) UJ	34 J	ND (410)
Metals															
Aluminum	mg/kg	8850	1290	12500	7360	6770	13700	4950	633	9760	6500	6920	7800	4540	8050
Antimony	mg/kg	ND (7.8)	ND (6.3)	0.41 J	0.26 J	ND (6.9) UJ	1.1 J	ND (8.1) UJ	ND (6.9) UJ	1.6 J	0.56 J	ND (6.7) UJ	0.75 J	0.95 J	0.28 J
Arsenic	mg/kg	1.5	1.3	8.1	4.3	3.9	5.7	5.9	2.3	7.8	4.0	11.1	4.8	5.3	6.7
Barium	mg/kg	15.6 J	6.3 J	53.3	64.9	31.9	41.8	13.5 J	14.9 J	57.7	25.0 J	121	45.3	43.1	58.1
Beryllium	mg/kg	0.84	ND (0.52)	ND (0.63) U	1.7	0.21 J	0.85	2.7	ND (0.58) U	0.60 J	1.1	0.097 J	0.32 J	0.27 J	3.8
Cadmium	mg/kg	0.88	0.049 J	0.31 J	1.2	0.22 J	0.17 J	0.42 J	0.84	0.49 J	0.37 J	0.99	0.37 J	0.50 J	0.68
Chromium Total Cobalt	mg/kg	11.4 8.4	2.4 1.9 J	15.7 4.9 J	13.3 12.0	213 J 346	28.6 J 3.4 J	11.2 J 12.3	5.1 J 0.80 J	19.3 J 4.2 J	26.9 J 9.8	248 J 7.4	13.4 J 3.3 J	15.0 J 3.2 J	44.2 J 36.8
	mg/kg	8.4 10.9	3.7	13.4	26.1	346	53.7	12.5	16.3	4.2) 41.0	9.8 14.0	7.4 86.7	24.5	3.2 J 24.7	36.8 17.7
Copper Cyanide (amenable)	mg/kg mg/kg	ND (0.65)	ND (0.52)	ND (0.63)	ND (0.64)	ND (0.57)	ND (0.68)	ND (0.68)	ND (0.58)	41.0 ND (0.61)	ND (0.65)	ND (0.56)	ND (0.62)	ND (0.62)	ND (0.63)
Cyanide (total)	mg/kg	ND (0.65)	ND (0.52)	ND (0.63)	ND (0.64)	ND (0.57)	ND (0.68)	ND (0.68)	ND (0.58)	ND (0.61)	ND (0.65)	ND (0.56)	ND (0.62)	ND (0.62)	ND (0.63)
Iron	mg/kg	8960	2830	19300	24400	11600	29500	12800	3370	26200	17300	14500	15400	15100	29100
Lead	mg/kg	10.7	2.9	23.5	14.5	28.1 J	15.4 J	12.0 J	21.0 J	73.6 J	13.7 J	213 J	33.9 J	39.4 J	36.8 J
Manganese	mg/kg	221	34.7	263	177	98.4 J	53.7 J	308 J	69.6 J	198 J	408 J	464 J	68.2 J	152 J	1170 J
Mercury	mg/kg	0.11 J	ND (0.10)	0.17	0.025 J	0.23	0.039 J	0.12 J	0.042 J	0.049 J	0.053 J	1.1	0.043 J	0.048 J	0.027 J
Nickel	mg/kg	20.4	2.4 J	10.1	39.9	35.1	22.1	55.8	3.0 J	10.8	27.3	26.2	7.1	6.0	65.4
Selenium	mg/kg	ND (0.65)	ND (0.52)	0.82	0.74	ND (0.57)	0.63 J	ND (0.68)	ND (0.58)	ND (0.61)	ND (0.65)	2.5	ND (0.62)	ND (0.62)	ND (0.63)
Silver	mg/kg	ND (1.3)	ND (1.0)	ND (1.3)	ND (1.3)	ND (1.1)	ND (1.4)	ND (1.4)	ND (1.2)	ND (1.2)	ND (1.3)	0.33 J	ND (1.2)	ND (1.2)	ND (1.3)
Thallium	mg/kg	0.71 J	ND (1.0)	0.92 J	ND (1.3)	2.0	ND (1.4)	0.61 J	ND (1.2)	ND (1.2)	ND (1.3)	1.1	ND (1.2)	ND (1.2)	ND (1.3)
Vanadium	mg/kg	11.3	4.3 J	25.4	22.3	18.6	30.8	14.0	3.7 J	29.7	25.3	15.4	21.7	20.0	35.9
Zinc	mg/kg	45.2	25.5	53.5	73.8	43.1 J	111 J	46.5 J	80.4 J	96.4 J	43.8 J	241 J	73.7 J	81.6 J	88.5 J
PCBs															
Aroclor-1016 (PCB-1016)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ	ND (43)	ND (37)	ND (41)	ND (41)	ND (41)
Aroclor-1221 (PCB-1221)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ	ND (43)	ND (37)	ND (41)	ND (41)	ND (41)
Aroclor-1232 (PCB-1232)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ	ND (43)	ND (37)	ND (41)	ND (41)	ND (41)
Aroclor-1242 (PCB-1242)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ	ND (43)	ND (37)	ND (41)	ND (41)	ND (41)
Aroclor-1248 (PCB-1248)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	79	ND (45)	ND (45)	19 J	ND (40) UJ	ND (43)	18 J	ND (41)	ND (41)	ND (41)
Aroclor-1254 (PCB-1254)	ug/kg	ND (43)	ND (35)	ND (42)	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ	ND (43)	ND (37)	ND (41)	ND (41)	ND (41)
Aroclor-1260 (PCB-1260)	ug/kg	ND (43) 0	ND (35)	ND (42) 0	ND (42)	ND (38)	ND (45)	ND (45)	ND (38)	ND (40) UJ 0	ND (43)	ND (37)	ND (41)	ND (41) 0	ND (41)
Sum of detected PCBs (ND=0)	ug/kg	U	U	U	U	79	U	0	19 J	U	U	18 J	U	U	0
General Chemistry															
Total Solids	%	76.9	95.6	79.0	78.0	87.4	73.7	74.0	86.7	81.8	77.4	89.5	80.3	80.9	79.7

Non-detect at associated value.

Estimated.

Non-detect at associated value. The associated value is estimated.

APPENDIX A

BOREHOLE LOGS

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DRILLING CONTRACTOR: RDNP

HOLE DESIGNATION: B-X031Y124 DATE COMPLETED: 4 November 2003 DRILLING METHOD: GEOPROBE FIELD PERSONNEL: J. CLOSE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELE ft AM:	SL	BOREH	OLE	RUN NUMBER	CORE RECOVERY %	RQD %	
	GROUND SURF	ACE 721.5	5			۳.S	RECO	Ř	
-2	Asphalt GRAVEL (FILL)	721.1							
- 4 	SM- SILTY SAND, fine grained, poorly graded, dark brown, loose, damp	718.5	5						
6 	- fine to medium grained, cohesive with silt, tan at 6.0ft BGS								
10	CL-CLAY, trace silt, stiff, low plasticity, brown,	711.3	3						
- - 12 -	damp								
- 									
	brown (tap to strong brown, bard at 17.0ft				- BENTONITE SEAL				
	- brown / tan to strong brown, hard at 17.9ft BGS								
-20	- off-white to gray at 20.0ft BGS - strong brown at 20.5ft BGS								
22 24									
- - - - - - - - - - - - - - - - - - -	- very hard at 25.6ft BGS								
109-428	- coarse gravel (possible chert) at 27.2ft BGS								
- 30 30 									
32 									
80707 907 907 907 907	BEDROCK END OF BOREHOLE @ 34.0ft BGS	688.3							
BEDROCKLOG 20040316 13968.GPJ CRA CORP.GDT 6/	NOTES: MEASURING POINT ELEVATIONS MAY CHANG	, GE; REFER	TOCURR	ENT ELEVA	TION TABLE				

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DRILLING CONTRACTOR: RDNP

HOLE DESIGNATION: B-X031Y124A DATE COMPLETED: 5 November 2003 DRILLING METHOD: GEOPROBE FIELD PERSONNEL: J. CLOSE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	BOREHOLE	RUN NUMBER	RE /ERY %	% О	
	GROUND SURFAC	CE 721.6		NUM	CORE RECOVERY	RQD	
	- Asphalt	721.2					
	GM/SM SILTY SAND & GRAVEL (FILL), little silt, medium grained, poorly graded, loose,	(Pg					
2	off-white, dry						
		718.6					
4	SM-SILTY SAND, medium to fine grained, well graded, loose, dark brown to black, dry	717.6					
-	CL/ML CLAY & SILT, cohesive, dense, damp						
6							
-	- rock/ coarse gravel, at 6.8ft BGS SM-SILTY SAND, medium graded, poorly	714.7					
8	graded, firm						
10							
10		710.8					
	CL-CLAY, trace coarse sand, poorly graded,						
12	low plasticity, dense, brown, damp						
14	- gravel, strong brown at 13.8ft BGS						
14	- gravel at 14.5ft BGS						
16	- brown to strong brown at 16.0ft BGS		BENTONITE				
	- coarse gravel at 16.9ft BGS		SEAL				
18							
20							
20							
22							
	- increase of fine gravel content at 23.0ft BGS						
24							
26							
28	- pale green at 27.9ft BGS						
F	SC-CLAYEY SAND, cohesive, medium to	693.0 692.6					
30	coarse sand, well graded, soft, strong brown, damp						
-	CL-CLAY, low plasticity, dense, strong brown,						
	damp						
32	- coarse gravel at 31.5ft BGS - tan / pale vellow at 31.6ft BGS	689.6					
	BEDROCK						
34	END OF BOREHOLE @ 32.4ft BGS						
<u></u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	; REFER TO C	CURRENT ELEVATION TABLE		1		1
	CHEMICAL ANALYSIS						

BEDROCK LOG 20040316_13968.GPJ CRA_CORP.GDT 6/4/04

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

HOLE DESIGNATION: B-X031Y124B

DATE COMPLETED: 5 November 2003

DRILLING METHOD: GEOPROBE

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

<u>LLIŅG</u>	CONTRACTOR: RDNP								
PTH GS	STRATIGRAPHIC DESCRIPTION & REMARKS	;	ELEV. ft AMSL	BOREHO	DLE	JN BER	CORE RECOVERY %	% C	
	GROUND S	URFACE	721.7			RUN NUMBER	RECOV	RQD	
-	Asphalt		721.3						
	GW/SW SAND & GRAVEL (FILL), trace silt, medium to coarse sand, fine gravel, loose								
	SM-SILTY SAND, trace coarse gravel, fine to medium grained, loose, dark brown to black, dry - gravel at 4.0ft BGS		718.7						
	GM-GRAVEL, sand and silt, fine to coarse sand, fine gravel, loose, tan, dry		714.7						
	CL-CLAY, little silt, low plasticity, dense,	000	711.5						
	brown, damp to moist - hard at 11.5ft BGS								
	- coarse gravel at 15.5ft BGS								
	- strong brown, fine gravel at 16.5ft BGS								
					BENTONITE SEAL				
	- coarse gravel at 20.5ft BGS - pale yellow & pale blue with strong brown at								
	21.0ft BGS								
	 coarse gravel at 29.8ft BGS pale yellow & pale green with strong brown at 30.4ft BGS 								
	BEDROCK		688.2 687.7						
	END OF BOREHOLE @ 34.0ft BGS								

HOLE DESIGNATION: B-X031Y124C

DATE COMPLETED: 5 November 2003

DRILLING METHOD: GEOPROBE

FIELD PERSONNEL: J. CLOSE

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	BOREHOLE	N ER	RE ERY %	%	
	GROUND SURFA			RUN NUMBER	CORE RECOVERY 9	RQD	
2	Asphalt GW/SW GRAVEL & SAND (FILL), medium grained, poorly graded, loose, off-white, dry	721.1					
4	SM-SILTY SAND, fine to medium grained, well graded, loose, dark brown to black, dry	718.5					
	GM-GRAVEL,some silt, trace medium to o coarse grained sand, fine gravel, loose, gray, o	714.5					
 10	CL-CLAY, medium to low plasticity, dense, medium brown to olive green,	712.5					
- 	- brown at 12.0ft BGS						
— 14 — — 16	- coarse gravel at 15.0ft BGS		BENTONITE				
	- brown to strong brown at 18.5ft BGS		SEAL				
- 22	- dark strong brown at 22.0ft BGS						
- 24 	- fine gravel at 23.8ft BGS - yellow - olive green at 24.0ft BGS						
-26 	- back to strong brown at 26.0ft BGS						
30	- pale blue/tan to pale yellow at 31.0ft BGS						
-32		688.5					
- 34	END OF BOREHOLE @ 33.3ft BGS	688.2	<u> </u>				
<u></u> <u>N</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER TO C	CURRENT ELEVATION TABLE				1

Page 1 of 1

DR A FT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DRILLING CONTRACTOR: RDNP

HOLE DESIGNATION	B-X031Y124D
DATE COMPLETED:	6 November 2003
DRILLING METHOD:	GEOPROBE
FIELD PERSONNEL:	J. CLOSE

1	DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	BOREHOLE	BER	RE ERY %	% (
		GROUND SURF	ACE	721.1		RUN NUMBER	CORE RECOVERY	RQD	
-	-2	Asphalt GW/SW GRAVEL & SAND (FILL), fine to coarse grained sand, fine gravel, damp		720.7					
	- 4	SW-SAND, fine to medium grained, well graded, loose, dark brown to black, damp		718.1					
-	-6	CL-CLAY, low plasticity, cohesive, firm, brown, damp		715.4					
-	- 8 - 10								
-	- 12								
	- 14	- stiff at 13.6ft BGS							
	- 16	- transition to strong brown at 16.0ft BGS			BENTONITE				
-	- 18 - 20	- trace fine gravel at 18.9ft BGS							
-	- 22	- dark strong brown at 22.4ft BGS - transition to pale yellow/pale green at 23.0ft							
04	- 24	BGS - transition to dark strong brown at 24.3ft BGS							
BEDROCK LOG 20040316_13968.GPJ CRA_CORP.GDT 6/4/04	-26 -28	- trace fine gravel at 27.0ft BGS							
0 CLU CLU CLU	- 30	- some coarse sand, fine gravel at 30.6ft BGS - transition to pale yellow at 31.5ft BGS							
40316_135	- 32	BEDROCK END OF BOREHOLE @ 32.9ft BGS		689.1 688.2					
LOG 200	- 34								
EDROCK	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS								
۳Ľ									

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

HOLE DESIGNATION: B-X154Y117

DATE COMPLETED: 12 November 2003

DRILLING METHOD: GEOPROBE

FIELD PERSONNEL: J. CLOSE

Page 1 of 1

DR A FT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

Rip Rap (Limestone) 724.3 1 CL-CLAY, cohesies, soft to firm, low plasticity, brown, damp 1 • transition to strong brown at 6.0ft BGS 2 • cobbles at 7.0ft BGS 10 SWICP-SAND & GRAVEL, medium to coarse grained, argay to black, wet 12 Science at region and gravel, brown, medium to coarse grained, argay to black, wet 14 Science at region at the soft to firm, low plasticity, olive green, damp to most 14 Science at region at the soft to firm, low plasticity, olive green, damp to most 14 Cl-CLAY, cohesies, soft to firm, low plasticity, olive green, damp to coarse grained, dense, dark thrown, moist 16 - strong brown, firm, dry at 20.5ft BGS 22 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 Gen at the soft box	DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	BOREHOLE	BER	RE ERY %	% (
Rip Rap (Limestone) 724.3 1 CL-CLAY, cohesies, soft to firm, low plasticity, brown, damp 1 • transition to strong brown at 6.0ft BGS 2 • cobbles at 7.0ft BGS 10 SWICP-SAND & GRAVEL, medium to coarse grained, argay to black, wet 12 Science at region and gravel, brown, medium to coarse grained, argay to black, wet 14 Science at region at the soft to firm, low plasticity, olive green, damp to most 14 Science at region at the soft to firm, low plasticity, olive green, damp to most 14 Cl-CLAY, cohesies, soft to firm, low plasticity, olive green, damp to coarse grained, dense, dark thrown, moist 16 - strong brown, firm, dry at 20.5ft BGS 22 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 BEDROCK (LIMESTONE) 28 Gen at the soft box		GROUND SURFACE	724.7		RUN NUMBER	CORE RECOVERY 9	RQD %
 - cobbles at 7.0ft BGS - cobbles at 7.0ft BGS SW/GP-SAND & GRAVEL, medium to coarse grained, well graded, fine grained gravel, hose, dark grav to black, wet SC-CLAYEY SAND, modium to coarse sand, coarse grained, dress, dark brown, moist coarse grained, dress, dark brown, dress, dr	2	CL-CLAY, cohesive, soft to firm, low plasticity,	724.3				
SW/GP-SAND & GRAVEL, medium to coarse grained, well graded, fine grained gravel, losse, dark gray to black, wet 711.1 12 SC-CLAYEY SAND, medium to coarse sand, concesive, firm, olive green, damp to moist 711.7 14 SM-SILTY SAND, some sitt, medium to coarse grained, dense, dark brown, moist 709.7 16 CL-CLAY, cohesive, soft to firm, low plasticity, olive green, damp 709.7 16 - dark gray to black at 15.5ft BGS 709.7 18 - strong brown, firm, dry at 20.5ft BGS 699.7 20 - strong brown, firm, dry at 20.5ft BGS 699.7 21 BEDROCK (LIMESTONE) 699.4 22 END OF BOREHOLE @ 25.3ft BGS 699.4 31 - and the stress of the stres	6 8 10						
16 CL-CLAY, cohesive, soft to firm, low plasticity, olive green, damp - dark gray to black at 15.5ft BGS 18 - strong brown, firm, dry at 20.5ft BGS 20 - strong brown, firm, dry at 20.5ft BGS 22 - strong brown, firm, dry at 20.5ft BGS 24 - BEDROCK (LIMESTONE) END OF BOREHOLE @ 25.3ft BGS 28 - Strong brown, firm, dry at 20.5ft BGS	12	grained, well graded, fine grained gravel, loose, dark gray to black, wet SC-CLAYEY SAND, medium to coarse sand, cohesive, firm, olive green, damp to moist SM-SILTY SAND, some silt, medium to	713.2	BENTONITE SEAL			
20 - strong brown, firm, dry at 20.5ft BGS 22	16	CL-CLAY, cohesive, soft to firm, low plasticity, olive green, damp	709.7				
22 22 24 699.7 699.4 699.7 699.4 899	_						
BEDROCK (LIMESTONE) 699.7 END OF BOREHOLE @ 25.3ft BGS 699.4 30	22	- strong brown, firm, dry at 20.5ft BGS					
BEDROCK (LIMESTONE) 699.4 26 END OF BOREHOLE @ 25.3ft BGS 30	24		699.7				
30 32 34	26		699.4				
34							
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (URRENT ELEVATION TABLE			

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DRILLING CONTRACTOR: RDNP

HOLE DESIGNATION	B-X154Y117A
DATE COMPLETED:	12 November 2003
DRILLING METHOD:	GEOPROBE
FIELD PERSONNEL:	J. CLOSE

CONCRETE PAD SM/SP- SAND (FILL), some silt, fine to medium grained, weil graded, loose, tan to dark gray, damp 4 CL-CLAY, cohesive, low plasticity, firm, strong brown, damp 6 - soft at 7.5tt BGS - sof	DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	BOREHOLE	RUN NUMBER)RE /ERY %	RQD %	
2 SM/SP-SAND (FILL), some silt, fine to medium grained, well graded, loose, tan to dark gray, damp 723.9 4 CL-CLAY, cohesive, low plasticity, firm, strong brown, damp 720.7 6 - soft at 7.5ft BGS 712.7 10		GROUND SURFACE	724.7		NUN	CORE RECOVERY	RQ	
CL-CLAY, cohesive, low plasticity, tim, strong brown, damp soft at 7.5ft BGS soft at 7.5ft BGS 10 12 12 SW-SAND, fine to medium grained, well graded, loose, tan to light brown, wet 14 16 18 CL-CLAY, cohesive, low plasticity, firm, strong brown, damp 20 22 24 BEDROCK (LIMESTONE) END OF BOREHOLE @ 25.3ft BGS 699.7 699.4	-	SM/SP- SAND (FILL), some silt, fine to medium grained, well graded, loose, tan to						
8 10 12 SW-SAND, fine to medium grained, well graded, loose, tan to light brown, wet 712.7 14 712.7 16 708.7 18 CL-CLAY, cohesive, low plasticity, firm, strong brown, damp 20 708.7 22 669.7 24 BEDROCK (LIMESTONE) 25 END OF BOREHOLE @ 25.31t BGS 30 32 32 34 MOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE		brown, damp	720.7					
SW-SAND, tine to medulum graned, Well graded, loose, tan to light brown, wet -14 -16 -18 CL-CLAY, cohesive, low plasticity, firm, strong brown, damp -20 -22 -24 -24 -26 BEDROCK (LIMESTONE) END OF BOREHOLE @ 25.3ft BGS	- - 		712 7					
20 22 22 24 26 BEDROCK (LIMESTONE) END OF BOREHOLE @ 25.3ft BGS	- - 	SW-SAND, fine to medium grained, well graded, loose, tan to light brown, wet		BENTONITE SEAL				
BEDROCK (LIMESTONE) 699.7 26 END OF BOREHOLE @ 25.3ft BGS		CL-CLAY, cohesive, low plasticity, firm, strong brown, damp	706.7					
26 END OF BOREHOLE @ 25.3ft BGS	-		699.7					
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS			699.4					
32 32 907 34 907 34 907 34 907 MOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS	GPJ CRA CO							
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS	50040316 							
CHEMICAL ANALYSIS		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	 EFER TO (URRENT ELEVATION TABLE				
	BEDROC							

Page 1 of 1

DRAFT

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

DRILLING CONTRACTOR: RDNP

HOLE DESIGNATION:	B-X154Y117B
DATE COMPLETED: 1	0 November 2003
DRILLING METHOD: 0	GEOPROBE
FIELD PERSONNEL: J	. CLOSE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	BOREHOLE	N N BER	RE ERY %	% (
	GROUND SURFACE	724.6		RUN NUMBER	CORE RECOVERY	RQD %			
2	CONCRETE PAD SM-SAND (FILL), some silt, fine to coarse grained, well graded, loose, tan to dark brown, damp	723.8							
4	- wet at 3.7ft BGS	719.6							
6	ML-SILT, little medium to coarse grained sand, dense, dark gray, damp to moist	719.0							
	- fine grained at 7.8ft BGS								
- - 	SW/GP-SAND & GRAVEL, medium to coarse grained sand, well graded, loose, dark brown, wet	714.1	BENTONITE SEAL						
14 	SW-SAND, trace fine gravel, fine to coarse	710.4							
-	grained, well graded, medium gray, wet	709.6							
- 16 -	grained sand, well graded, loose, rust, wet								
— 18 - -	CL-CLAY, cohesive, firm, low plasticity, olive green to dark gray, moist	706.2							
20	green te dain grey, mont								
22 									
24 									
1 0/70 1 0/70	BEDROCK (LIMESTONE) END OF BOREHOLE @ 25.4ft BGS	699.6 699.2							
BEDROCK LOG 20040316_13968.GPJ CRA_CORP.GDT P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
30 									
3962									
E04002 9C									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE	•					
BEDRC	CHEMICAL ANALYSIS								